PolySpace® Products for C 7
User’s Guide

‘\The MathWorks™

Accelorating the poce of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
PolySpace® Products for C User’s Guide
© COPYRIGHT 1999-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2008 Online Only Revised for Version 5.1 (Release 2008a)
October 2008 Online Only Revised for Version 6.0 (Release 2008b)
March 2009 Online Only Revised for Version 7.0 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Introduction to PolySpace Products

Introduction to PolySpace Products
The Value of PolySpace Verification
How PolySpace Verification Works
Product Componentscc i,
Installing PolySpace Products
Related Products 0.,

PolySpace Documentation
AboutthisGuidettt
Related Documentation

1-2

1-4
1-6

1-6

1-8

1-8

Choosing How to Use PolySpace Software

2

How to Use This Chapter

Applying PolySpace Verification to Your Development
Process ... e e
Overview of the PolySpace Approach
Standard Development Process
Rigorous Development Process: Introducing Tools and

CodingRules
A Quality/Qualification Approach
Code Acceptance Criterionooeieeneeeeenn.
Choosing the Type of Verification You Want to Perform

2-4
2-4
2-9

2-12
2-15
2-16
2-17

iii

iv

Contents

Setting Up a Verification Project

3

Creatinga Project
What Is a Project?
Project Directoriesccuuuiiiiiiinnnnn.
Opening PolySpace Launcher
Specifying Default Directory
Creating New Projects
Opening Existing Projects,
Specifying Source Files
Specifying Include Directoriescc......
Specifying Results Directoryccc......
Specifying Analysis Optionsccvvuevnn...
Configuring Text and XML Editors
Saving the Project,

Setting Up Project to Check Coding Rules
PolySpace MISRA Checker Overview
Checking Compliance with MISRA C Coding Rules
Creating a MISRACRules File
Excluding Files from the MISRA C Checking

Setting Up Project for Generic Target Processors
Project Model Files
Creating Project Model Files
Viewing Existing Generic Targets
Defining Generic Targetsc.ccuiiiiiinn..
Deleting a Generic Targetccciiiiinn..
Common Generic Targetsccoiiiiienn...
Creating a Configuration File from a PolySpace Project

Model File

Setting up Project to Automatically Test Orange
Code
PolySpace Automatic Orange Tester
Enabling the Automatic Orange Tester

3-2

Emulating Your Runtime Environment

q |

Setting UpaTargetcc0iiiiiiinnn... 4-2
Target/Compiler Overviewc.ouevuuuennn. 4-2
Specifying Target/Compilation Parameters 4-2
Predefined Target Processor Specifications (size of char, int,

float, double...) 4-3
Generic Target Processorso, 4-5
Compiling Operating System Dependent Code (OS-target

ISSULS) vt ittt ettt et e e e 4-5
Address Alignment i 4-9
Ignoring or Replacing Keywords Before Compilation 4-10
Verifying Code That Uses KEIL or IAR Dialects 4-13
How to Gather Compilation Options Efficiently 4-19

Verifying an Application Without a “Main” 4-22
Main Generator OvVerviewccviueeenne... 4-22
Automatically Generatinga Main 4-23
Manually GeneratingaMain 4-23

Applying Data Ranges to External Variables and Stub

Functions DRS) i 4-25
Overview of Data Range Specifications (DRS) 4-25
Specifying Data Ranges 4-25
File Format 4-26
Variable Scopeviiiii i e 4-28
Performing Efficient Module Testing with DRS 4-30
Reducing Oranges with DRS 4-31

Preparing Source Code for Verification

5

Stubbing 5-2
Stubbing Overviewc.iiiiiinnn 5-2
Manual vs. Automatic Stubbing 5-2
The Stubbing Options PURE and WORST 5-6
The Default and Alternative Behavior for Stubbing 5-6

Function Pointer Cases 5-8

vi

Stubbing Functions with a Variable Argument Number .. 5-8

Finding Bugs in _polyspace_stdstubs.c 5-9

Preparing Code for Variables 5-11
Assigning Ranges to Variables/Assert? 5-11
Checking Properties on Global Variables at Any Point:

Global assertoiiiiiiiiiiiiiinnnnn 5-12
Modeling Variable Values External to my Application 5-15
How are Variables Initialized? 5-16
Verifying Code with Undefined or Undeclared Variables

and Functions i 5-17

Preparing Code for Built-in Functions 5-19

Preparing Multitasking Code 5-20
PolySpace Software Assumptions 5-20
Modelling Synchronous Tasks 5-21
Modelling Interruptions and Asynchronous

Events/Tasks/Threads, 5-23
Are Interruptions Maskable or Preemptive by Default? ... 5-25
Shared Variables i, 5-27
MailboXes .. ovvii it e e 5-31
Atomicity (Can an Instruction be Interrupted by

Another) e 5-34
Priorities i e e e 5-35

Verifying “Unsupported” Code 5-37
Ignoring Assembly Code, 5-37
Dealing with Backward “goto” Statements 5-43
Types Promotion 5-46

6

Types of Verification 6-2
Running Verifications on PolySpace Server 6-3
Starting Server Verification 6-3

Contents

What Happens When You Run Verification 6-4
Managing Verification Jobs Using the PolySpace Queue

Managercoiiiiii e 6-5
Monitoring Progress of Server Verification 6-6
Viewing Verification Log File on Server 6-9
Stopping Server Verification Before It Completes 6-11
Removing Verification Jobs from Server Before They

Run ... e 6-12
Changing Order of Verification Jobs in Server Queue 6-13
Purging Server Queue 6-13
Changing Queue Manager Password 6-15
Sharing Server Verifications Between Users 6-15

Running Verifications on PolySpace Client 6-19
Starting Verificationon Client 6-19
What Happens When You Run Verification 6-20
Monitoring the Progress of the Verification 6-21
Stopping Client Verification Before It Completes 6-22

Running Verifications from Command Line 6-24
Launching Verificationsin Batch 6-24
Managing Verificationsin Batch 6-24

Troubleshooting Verification Problems

7

Verification Process Failed Exrors 7-2
OVeIVIBW o ittt ettt ettt e e 7-2
Hardware Does Not Meet Requirements 7-2
You Did Not Specify the Location of Included Files 7-2
PolySpace Software Cannot Find the Server 7-3
Limit on Assignments and Function Calls 7-4

Compile Errors 7-6
OVeIVIBW o ittt ettt ettt e e e 7-6
Examining the Compile Log 7-6
SYNtAX ErTOT . vt vttt ettt e 7-8
Undeclared identifier, 7-8
No such file or directorycoiieeinnnnnnn. 7-9

vii

viii

Contents

Compilation errors with keywords: @interrupt,

@address(0OxABCDEF) 7-9
Link Messagescuiiiiinne i 7-12
L0 =) T 1= 7-12
Function: Wrong Argument Type 7-12
Function: Wrong Argument Number 7-13
Variable: Wrong Typeiiiiiiiinnnn.. 7-14
Variable: Signed/Unsigned 7-14
Variable: Different Qualifier 7-15
Variable: Array Against Variable 7-15
Variable: Wrong Array Sizec.cciiiininn... 7-16
Missing Required Prototype for varargs 7-16
Stubbing Exrorsc.ciiiiiiiiiii 7-17
Errors when Compiling _polyspace_stdstubs.c 7-17
Errors when Creating Automatic Stubs 7-22
Intermediate Language Errors 7-25
Reducing Verification Time 7-27
How Far has the Verification Progressed? How Can I
Predict the Duration? 7-27
An Ideal Application Sizecciiiiieeeeoo... 7-29
Why Should there be an Optimum Size? 7-30
Switch the Antivirus Off 7-31
Tuning PolySpace Parameters 7-31
Selecting a Subset of Code, 7-32
A Decision Algorithm to Speed-Up a Verification: Hints and
Troubleshooting 7-37
What are the Benefits of these Methods? 7-42

Reviewing Verification Results

8|

Before You Review PolySpace Results 8-2
Overview: Understanding PolySpace Results 8-2
Why Gray Follows Red and Green Follows Orange 8-3
What is the Message and What does it Mean? 8-4

What i1s the C Explanation?

Opening Verification Results
Downloading Results from Server to Client
Opening Verification Results
Exploring the Viewer Window
Selecting Viewer Mode,
Setting Character Encoding Preferences

Reviewing Results in Assistant Mode
What Is Assistant Mode? vvinn..
Switching to Assistant Mode
Selecting the Methodology and Criterion Level
Exploring Methodology for C
Defining a Custom Methodology
Reviewing Checks

Reviewing Results in Expert Mode
What Is Expert Mode? ciiiiiiinn...
Switching to Expert Mode
Selecting a ChecktoReview
Displaying the Calling Sequence
Tracking Review Progress
Making the Reviewed Column Visible
Filtering Checks i,
Typesof Filterscciiiiiii ..
Creatinga Custom Filter

Generating Reports of Verification Results

Using PolySpace Results
Review Runtime Errors: Fix Red Exrrors
Review Dead Code Checks: Why Gray Code is

Interesting
Selective Orange Review: Finding the Maximum Number

of BugsinOneHour
Exhaustive Orange Review at Unit Phase
Exhaustive Orange Review at Integration Phase
Integration Bug Tracking
How to Find Bugs in Unprotected Shared Data
Dataflow Verification,
Dataand CodingRules

ix

Potential Side Effect of a Red Error 8-51
PolySpace Remembers the Relationships Between

Variablesiiiiiii e e 8-53
Why There Might be 2 Distinct Colors in a while/for
Statement. e e e 8-54

Managing Orange Checks

2

Understanding Orange Checks 9-2
What is an Orange Check? o, 9-2
Sources of Orange Checks, 9-3
Determining Cause of Orange Checks 9-5

Reducing Orange Checks in Your Results 9-6
Options to Reduce Orange Checks 9-6
Generic Objectives: A Balance Between Precision and

Verification Time 9-7
Applying Coding Rules to Reduce Orange Checks 9-8
Varying the Precision Level 9-13
Applying Software Safety Level Wisely 9-14
Adding Precision Constraints at the Periphery Via

StUDS L e 9-15
Describing Multitasking Behavior Properly 9-17
Tuning Advanced Parameters 9-18
Applying Data Ranges 9-19

Reviewing Orange Checks 9-20
Selective Orange Reviewcovn... 9-20
Performing a Selective Orange Review 9-21
Exhaustive Orange Review 9-22
Performing an Exhaustive Orange Review 9-23

Automatically Testing Orange Code 9-26
Automatic Orange Tester Overview 9-26
Before Using the Automatic Orange Tester 9-29
Launching the Automatic Orange Tester 9-31
Reviewing the Test Results 9-35
Refining Data Ranges 9-39

Contents

Saving and Reusing Your Configuration 9-43

Exporting Data Ranges for PolySpace Verification 9-44
Configuring Compiler Options 9-45
Technical Limitationsc0tiiiiinnnnn. 9-46

10

PolySpace In One Click Overview 10-2
Using PolySpace InOne Click 10-3
PolySpace In One Click Workflow 10-3
Setting the Active Project 10-3
Launching Verification viiuen.. 10-5
Using the TaskbarIcon 10-9

11

PolySpace MISRA Checker Overview 11-2
Setting Up MISRA C Checking 11-4
Checking Compliance with MISRA C Coding Rules 11-4
Creating a MISRACRulesFile 11-5
Excluding Files from the MISRA C Checking 11-7
Configuring Text and XML Editors 11-8
Running a Verification with MISRA C Checking 11-10
Starting the Verification 11-10
Examining the MISRACLog 11-11
Opening MISRA-C Report, 11-12
Rules Supported i, 11-14
Language Extensionsc0uiiiiinnnnn. 11-15
Character Setsvvtiiii it 11-15
Identifiers e 11-16

xi

xii

Contents

PSS vttt e 11-17

Constants e 11-17
Declarations and Definitions 11-18
Initialization 11-20
Arithmetic Type Conversioncvvuuuuen... 11-20
Pointer Type Conversionccuviuuunnnn. 11-24
Expressions e 11-25
Control Statement Expressions 11-28
Control Flow i, 11-29
Switch Statements, 11-31
Functions i 11-32
Pointers and Arrays i 11-33
Structures and Unionsc0iiiiiieneeenn... 11-33
Preprocessing Directives, 11-34
Standard Librariesc.iiiiiinnnenn.. 11-37
runtime Failures 11-39
Rules Partially Supported 11-40
Environment 11-40
Language Extensionciiiiinnn.. 11-41
Identifier 11-42
Declarations and Definitions 11-42
Expressions e e 11-43
Control Statement Expressions 11-45
Control Flow i, 11-46
Functions 11-47
Pointers and Arrays 11-48
Preprocessing Directives, 11-49
Rules Not Checked i, 11-51
Environment 11-51
Language Extensionsc0iiiiiinnnnn. 11-52
Documentation 11-52
PSS vttt e 11-53
Functions 11-54
Pointers and Arrays i 11-54
Structures and Unionscoiiiiiieneennn.. 11-55
Standard Librariesc.iiiiiiniee.. 11-55

Code Verification for Eclipse IDE

12

OVerVIeW ... e e e 12-2
Using PolySpace Software Within Eclipse IDE 12-3
PolySpace Features in the Eclipse Editor 12-3
Verifying Files from Eclipse IDE 12-5
Glossary

Index

xiii

xiv Contents

Introduction to PolySpace
Products

® “Introduction to PolySpace Products” on page 1-2

® “PolySpace Documentation” on page 1-8

Introduction to PolySpace® Products

Introduction to PolySpace Products

In this section...

“The Value of PolySpace Verification” on page 1-2
“How PolySpace Verification Works” on page 1-4
“Product Components” on page 1-6

“Installing PolySpace Products” on page 1-6

“Related Products” on page 1-6

The Value of PolySpace Verification

PolySpace® products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed. PolySpace verification uses formal
methods not only to detect errors, but to prove mathematically that certain
classes of run-time errors do not exist.

PolySpace verification can help you to:

e “Ensure Software Reliability” on page 1-2
® “Decrease Development Time” on page 1-3

¢ “Improve the Development Process” on page 1-4

Ensure Software Reliability

PolySpace software ensures the reliability of your C applications by proving
code correctness and identifying run-time errors. Using advanced verification
techniques, PolySpace software performs an exhaustive verification of your
source code.

Because PolySpace software verifies all possible executions of your code, it
can identify code that:

® Never has an error

® Always has an error

® Js unreachable

Introduction to PolySpace® Products

® Might have an error

With this information, you can be confident that you know how much of your
code 1s run-time error free, and you can improve the reliability of your code by
fixing the errors.

You can also improve the quality of your code by using PolySpace verification
software to check that your code complies with MISRA C® standards.’

Decrease Development Time

PolySpace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process, but using it during early coding
phases allows you to find errors when it is less costly to fix them.

You use PolySpace software to verify C source code before compile time. To
verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

A graphical user interface helps you to efficiently review verification results.
Results are color-coded:

¢ Green — Indicates code that never has an error.

®* Red — Indicates code that always has an error.

¢ Gray — Indicates unreachable code.

¢ Orange — Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors. You will spend less time

debugging because you can see the exact location of an error in the source
code. After you fix errors, you can easily run the verification again.

1. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

1-3

Introduction to PolySpace® Products

1-4

Using PolySpace verification software helps you to use your time effectively.
Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

Reviewing the code that might have errors (orange code) can be
time-consuming, but PolySpace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

Improve the Development Process

PolySpace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

PolySpace verification software supports code verification throughout the
development process:

¢ An individual developer can find and fix run-time errors during the initial
coding phase.

® Quality assurance can check overall reliability of an application.

e Managers can monitor application reliability by generating reports from
the verification results.

How PolySpace Verification Works

PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program without
actually executing it. This differs significantly from other techniques, such
as runtime debugging, in that the verification it provides is not based on a
given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

What is Static Verification

Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. However, most
Static Verification tools only verify the complexity of the software, in a search
for constructs which may be potentially dangerous. PolySpace verification

Introduction to PolySpace® Products

provides deep-level verification identifying almost all runtime errors and
possible access conflicts on global shared data.

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable I’ never overflows the range of 'tab’ a traditional
approach would be to enumerate each possible value of '1’. One thousand
checks would be needed.

Using the static verification approach, the variable I’ is modelled by its
variation domain. For instance the model of '1’ 1s that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,

the information that ’1’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of 1’ is smaller than the range of ’tab’. Only one check is required

to establish that - and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
verification works by performing upper approximations. In other words, the
computed variation domain of any program variable is always a superset of
its actual variation domain. The direct consequence is that no runtime error
(RTE) item to be checked can be missed by PolySpace verification.

1-5

Introduction to PolySpace® Products

Product Components

The PolySpace products for verifying C code are combined with the PolySpace
products for verifying C++ code. These products are:

e “PolySpace® Client for C/C++ Software” on page 1-6
e “PolySpace® Server for C/C++ Software” on page 1-6

PolySpace Client for C/C++ Software

PolySpace® Client™ for C/C++ software is the management and visualization
tool of PolySpace products. You use it to submit jobs for execution by
PolySpace Server, and to review verification results. The PolySpace client
software includes the Viewer, DRS, MISRA C Checker, Report Generator, and
Automatic Orange Tester features.

PolySpace client software is typically installed on developer workstations that
will send verification jobs to the PolySpace server.

PolySpace Server for C/C++ Software

PolySpace® Server™ for C/C++ software is the computational engine of

PolySpace products. You use it to run jobs posted by PolySpace clients, and to
manage multiple servers and queues. The PolySpace Server software includes
the Remote Launcher, Report Generator, DRS, and HTML Generator features.

PolySpace server software is typically installed on machines dedicated to
PolySpace software that will receive verifications coming from PolySpace
clients.

Installing PolySpace Products

For information on installing and licensing PolySpace products, refer to the
PolySpace Installation Guide.

Related Products

® “PolySpace Products for Verifying C++ Code” on page 1-7
e “PolySpace Products for Verifying Ada Code” on page 1-7

Introduction to PolySpace® Products

e “PolySpace Products for Linking to Models” on page 1-7

PolySpace Products for Verifying C++ Code

For information about PolySpace products that verify C++ code, see the
following:

http://www.mathworks.com/products/polyspaceclientc/

http://www.mathworks.com/products/polyspaceserverc/

PolySpace Products for Verifying Ada Code

For information about PolySpace products that verify Ada code, see the
following:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

PolySpace Products for Linking to Models

For information about PolySpace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to PolySpace® Products

PolySpace Documentation

In this section...
“About this Guide” on page 1-8

“Related Documentation” on page 1-8

About this Guide

This document describes how to use PolySpace software to verify C code, and
provides detailed procedures for common tasks. It covers both PolySpace
Client for C/C++ and PolySpace Server for C/C++ products.

This guide is intended for both novice and experienced users.

Related Documentation

In addition to this guide, the following related documents are shipped with
the software:

® PolySpace Products for C Getting Started Guide — Provides a basic
workflow and step-by-step procedures for verifying C code using PolySpace
software, to help you quickly learn how to use the software.

® PolySpace Products for C Reference — Provides detailed descriptions
of all PolySpace options, as well as all checks reported in the PolySpace
results.

® PolySpace Installation Guide — Describes how to install and license
PolySpace products.

® PolySpace Release Notes — Describes new features, bug fixes, and
upgrade issues.

You can access these guides from the Help menu, or by or clicking the Help
icon in the PolySpace window.

To access the online documentation for PolySpace products, go to:

/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

PolySpace® Documentation

The MathWorks Online

For additional information and support, see:

www.mathworks.com/products/polyspace

http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

1 Introduction to PolySpace® Products

1-10

Choosing How to Use
PolySpace Software

* “How to Use This Chapter” on page 2-2
* “Applying PolySpace Verification to Your Development Process” on page 2-4

2 Choosing How to Use PolySpace® Software

How to Use This Chapter

This chapter is designed for Project managers, quality managers, and
developers who want to integrate PolySpace verification into their project
development cycle. It explains how to apply PolySpace verification to each
phase of the typical project lifecycle.

PolySpace verification supports both productivity and quality, but there is
always a balance between these two goals. Generally, the criticality of your
application determines your quality model — the balance between them.

This chapter assumes that your primary goal is to achieve maximum
productivity with no quality defects. The document describes how to use
PolySpace verification to achieve this goal at each phase of the development
cycle. You must asses the costs of implementing each recommendation
yourself, given your own quality model.

How can I use PolySpsce in my How can I change the process to
corrent process? get more oot of PolySpace?

How can I improve the use of
PolySpace Verifier within my
software development process?

On given results, how can I find the How can I get the best results?
maximum number of anomalies?

How to Use This Chapter

This guide suggests answers to the following questions:

Steps PolySpace usage PolySpace activities

8

Data : What are the costs & benefirs?
rules
[Which PolvSpace acrivities
should be used?

[Which steps? Which PolySpace
tools?

[When in my development
cvele?

Integration bugs?

Coding
rules \/

Development cycle

ZTTAN

Data flow / shared conflicts

2-3

2 Choosing How to Use PolySpace® Software

Applying PolySpace Verification to Your Development
Process

In this section...

“Overview of the PolySpace Approach” on page 2-4
“Standard Development Process” on page 2-9

“Rigorous Development Process: Introducing Tools and Coding Rules” on
page 2-12

“A Quality/Qualification Approach” on page 2-15

“Code Acceptance Criterion” on page 2-16

“Choosing the Type of Verification You Want to Perform” on page 2-17

Overview of the PolySpace Approach

PolySpace verification supports two objectives at the same time:

® Reducing the cost of testing and validation
¢ Improving software quality
You can use PolySpace verification in different ways depending on the your

development context. The primary difference being how you exploit the
results. The following diagrams summarize the different approaches.

Note This section does not attempt to compare the cost of certification
processes, or of development processes with or without coding rules. The
graphs compare the costs of typical processes with and without PolySpace
software.

When No Coding Rules Are Adopted

During coding, there are two recommended approaches:

Applying PolySpace® Verification to Your Development Process

Bug Detection
Cost

Current process
(classical testing)

PolySpace:
* File by file analysis
= Red and g+
Selective Ora

PolySpace:
File by file analysis
* Redand gre;

Software
Quality

=
L

The first approach is to focus on red and gray results only — fix the red bugs,
and check the dead code for abnormalities.

The second approach performs these activities, and adds a partial review of
the orange warnings. The goal is to find as many bugs as possible in a limited
amount of time. This approach finds more bugs, and therefore improves the
overall quality of the software. It does involve more effort, but the amount of
time spent to find each bug remains very small.

Note Using PolySpace verification on a single file is efficient. Even though
the verification has no knowledge of the file context, experience shows that
50% of bugs detected by PolySpace verification can be found locally.

“=" This symbol is used to indicate that when a team has
successfully implemented one approach, they can migrate to a more
demanding (and more fruitful) one. This migration may not be desirable — it

depends on the context of the project.

Then, after coding, before testing activity:

2-5

2 Choosing How to Use PolySpace® Software

2-6

Bug Detection
Cost

Current process
{classical testing)

PolySpace:
* Integrahon analysis

= Red and grey

PolySpace:
. Integration analysis
* Red and gre;

data conflicts

Software

Quality

Again, the first approach is to use only the red and gray results — fix the
red bugs, and check the dead code.

The second approach performs these activities, and adds a partial review of
the orange warnings and of the orange shared data.

When Coding Rules Have Been Adopted

The main difference between this process and the previous process is in
respect to the cost of bug detection. When PolySpace verification is used in
conjunction with coding rules, the costs of bug detection are much lower.

During coding, there are three ways to use PolySpace verification:

Applying PolySpace® Verification to Your Development Process

Cugrent process
{with coding rules)

Bug Detection
Cost

PolySpace:
File by File analvsis
* Eed and Grey

Exhaustive Orange Beview

PolySpace:
* File by file anahy=is
* Redand zrey

Selective Orange Revien

PolySpace:
#* File by file analysis
* Fed and grey

Software
Quality

Compared to the previous situation (without coding rules), there is an
additional possibility. Instead of reviewing only certain orange warnings in a
file, you can check all of them systematically. This is possible because when
the right coding rules are respected, there are very few orange checks in

a file. Therefore, checking all orange warnings can be very fruitful. A large
proportion of those anomalies require some correction to the code, with some
users reporting up to 50%.

Then, after coding, before the testing activity:

2-7

2 Choosing How to Use PolySpace® Software

2-8

Current process
(with coding rules)

Bug Detection
Cost

PolySpace:
- Integration analysis
* Fed and zre;

PolySpace:
. Integration analy=is
. Red and grey

& Software
Quality

B
=

Note It is also possible to migrate from a selective to an exhaustive orange
review when performing an integration verification, but this activity is very
costly.

In a Certification Context

In a certification context, a “quality/qualification” approach where PolySpace
verification replaces an existing activity. In this case quality is already high
and maybe at a “zero defects” level, but PolySpace verification will reduce the
cost of achieving such quality. In this context, PolySpace verification can
replace the traditional time consuming control and data flow verification, as
well as shared data conflict detection.

As an Acceptance Tool

The fourth and last approach implies the use of PolySpace verification as an
acceptance tool, or as a method of meeting an acceptance criterion.

Applying PolySpace® Verification to Your Development Process

Standard Development Process

Overview

This approach is mainly for consideration by a project manager rather than a
quality manager. It aims to improve productivity rather than to prove the
quality of the application being analyzed.

The Software Development Process

This section describes how to introduce PolySpace verification to a standard
software development process. For instance,

¢ In Ada, no unit test tools or coverage tools are used: functional tests are
performed just after coding
¢ In C, either no coding rules are present or they are not always followed.

The figure below illustrates the revised process, with PolySpace verification
introduced in the tool chain. It will be used just before functional testing.

Design

Coding P PolySpace 3 Functional \ WValidation
Y tests

The Objective of Using PolySpace Verification

PolySpace verification will be used to improve the software quality and
productivity. It will help the developer to find and fix bugs much quicker than
the existing process. It will also improve the software quality by finding bugs
which would otherwise be likely to remain in the software after delivery.

It does not prove the robustness of the code because the prime objective is to
deliver code of at least similar quality to before, but to ensure that code is
produced in a predictable time frame with controlled and minimized delay
and costs. Another approach for this purpose is described in the next section.

2-9

2 Choosing How to Use PolySpace® Software

2-10

The PolySpace Approach

The way forward here is for PolySpace products to be applied by developers
or testers on a file-by-file verification basis. The users will use the default
PolySpace options, the most prominent feature of which is the automatically
generated “main” function. This main will call all unused procedures and
functions with full range parameters. The users will be required to fix red
errors and examine gray code, and they will also do a selective orange review.

OTATIZR TEVISTA

Wi of bug Found per mimats

Orange review

Cost/Benefits of a Selective Orange Review

This selective orange review can be applied on specific Runtime Error
categories, such as “Out of Bound Array Index”, or on all error categories.
This depends on each individual developers coding style.

It is true that with this approach some bugs might remain in the unchecked
oranges, but it represents a significant move forward from the initial position.
Coding rules would help further if more improvement is sought.

A Complementary Approach

A second approach is also possible which, unlike the first, focuses only on an
increase in quality. If coding rules are applied, this second approach will
turn into a cheap and productive one as described by the second arrow on
the illustration.

Applying PolySpace® Verification to Your Development Process

Integration tests are also possible at this stage. This verification will be
performed by PolySpace software on larger modules, and the orange review
will be focused on orange Runtime errors which were not examined after
the file-by-file verification.

Integration with Configuration Management Tools

PolySpace verification can also be used by project managers to establish and
test for transition criteria to proceed to file check-in

¢ Daily check-in — PolySpace verification is applied to the file(s) currently
under development. Compilation must complete without the permissive
option.

¢ Pre-unit test check-in — PolySpace verification is applied to the file(s)
currently under development.

* Pre-integration test check-in — PolySpace verification is applied to
the whole project until compilation can complete without the permissive
option. This stage will differ from the daily check-in activity because link
errors will be highlighted here.

¢ Pre-build for integration test check-in — PolySpace verification is
applied to the whole project, with all multitasking aspects accounted for
as appropriate.

* Pre-peer review check-in — PolySpace verification is applied to the
whole project, with all multitasking aspects accounted for as appropriate.

For each check-in activity mentioned above, the transition criterion could be:
“No bug found within the allocated time defined by the process”. For instance,
if the process defines that 20 minutes should be dedicated to a selective
review, the criterion could be: “no bug found during these 20 minutes”.

Costs and Benefits

Using PolySpace verification to find unit/local bugs in this way will both
reduce the cost of the software and improve the quality:

® Red checks and bugs in gray checks. The number of bugs found thanks to
these colors can vary from one user to another, but experience shows that

2-11

2 Choosing How to Use PolySpace® Software

2-12

on average, around 40 percent of verifications will reveal one or more red
errors and/or will reveal bugs in gray code.

® Orange checks. Experience suggests that the time needed to find one bug
per file varies from 5 minutes to 1 hour, and is typically around 30 minutes.
This represents an average of two minutes per orange check review, and
a total of 20 orange checks per package in Ada and 60 orange checks per
file in C.

With this approach, using PolySpace verification to find integration bugs
will increase the quality, but at a higher usage cost:

®* 75% of bugs are local in this type of code — the selective orange review
at integration phase reveals a of integration bugs, and the rest () of local
bugs. Finding real integration bugs might require another process which
requires coding rules to be efficient.

® Setup time — the time needed to setup the verification can be higher due
to a lack of coding rules. Code modifications might be needed. Most of these
modifications cannot be automatic without changes in the process.

* Anomalies and complexity — In this configuration, any particular file
will receive more orange checks (about twice as many). These oranges are
likely to be anomalies, and will make the orange check review more time
consuming.

* An exhaustive orange review can take 25 man-days for a 50000
line project — This would represent the effort where the aspiration is for
bug free software, assuming that a 50000 line application contains about
3000 orange checks

Rigorous Development Process: Introducing Tools
and Coding Rules

Overview
This is of interest for both project and quality managers, who are likely to be
interested in this approach.

Applying PolySpace® Verification to Your Development Process

The Software Development Process
This section describes how to use PolySpace verification within a development
process.

The picture below describes the new process, with PolySpace verification
introduced into the tool chain. It will be used just before functional testing.

Design

Coding

Coding PolySpace Functional "-, Walidation
\ \ tests \
Y| Bules | \ \
| check- |)
/| 1ing | / /
f / /
/ ' f /

PolySpace verification will be used to increase both the software quality and
its productivity.

The PolySpace Approach
Use PolySpace on a file by file verification basis.

¢ The “main” used to analyze each file is very often automatically

generated by the project, and not by PolySpace (unlike the standard
approach).

Initialization ranges should be applied to input data. For instance, if a

variable “x” is read by functions in the file, and if x can be initialized to any

value between 1 and 10, this information should be included as part of
the verification.

[Optional] Some properties of output variables might be checked. For
instance, if a variable “y” is returned by a function in the file and should
always be returned with a value in the range 1 to 100, then PolySpace can
flag instances where that range of values might be breached.

Red errors will be fixed and gray code examined, and an exhaustive orange
review will be completed.

The usage of permissive options is not advisable at this stage.

2-13

2 Choosing How to Use PolySpace® Software

2-14

Note The distinguishing feature for this approach as compared with the
standard approach is that the orange check review is exhaustive here.

A Complementary Approach

A second approach is also possible. Use PolySpace at integration phase to
track integration bugs, and review:

® Red and gray integration checks;

® The remaining orange checks with a selective review: Integration bug
tracking.

Costs and Benefits

With this approach, using PolySpace to find bugs will typically provide the
following benefits

e 3.5 orange checks per file, 3 gray checks per file yielding an average of 1
bug per file. Typically, 2 of these oranges might represent the same bug,
and another might represent an anomaly.

® An average of 2 verifications by PolySpace per file is typical before the file
can be checked-in to the configuration management system.

® The average verification time is about 15 minutes.

Note If the development process includes data rules which determine how
the data flow are designed, the benefits might even be higher. The data
rules would implicitly reduce the potential for PolySpace to find integration
bugs.

With this approach, using PolySpace verification to find integration bugs
might bring the following results. On a typical 50000 line project:

® A selective orange check review might reveal one integration bug
per hour of orange code review and takes about after 6 hours, which
long enough to review the main orange points throughout the whole

Applying PolySpace® Verification to Your Development Process

application. This represents a step towards an exhaustive orange check
review. Spending more time is unlikely to be efficient, and wont guarantee
that no bugs remain.

® An exhaustive orange review takes between 4 and 6 days, given that a
50000 lines of code application might contain about 400-800 orange checks.

A Quality/Qualification Approach

Overview
Quality managers are likely to be interested in this approach.

The Software Development Process

This section describes how to use PolySpace verification within a process which
includes coding and data rules. Such a process is typical of a qualification
environment, with existing activities which must be performed. Before the
introduction of PolySpace verification, they will have been performed by hand,
with classical testing methods, or using previous generation tools. PolySpace
verification will replace these activities, and reduce the cost of the process.

PolySpace verification is not intended to improve the quality which is already
at the desired level. It will complete the same tasks more efficiently, bringing
improved productivity.

The Obijective of Using PolySpace Verification

PolySpace verification will be used to increase the productivity on existing
activities, such as

e Data and control flow verification
e Shared data detection
* Robustness unit tests.

The PolySpace Approach

¢ For data and control flow verification and shared data detection, PolySpace
can be used on the whole application or on a subsection of the application.

2-15

2 Choosing How to Use PolySpace® Software

2-16

® For robustness unit tests (as opposed to functional unit tests), PolySpace
might be used in the same way as the method applied to the Rigorous
development process.

Costs and Benefits

The replacement of these activities can lead to a significant cost reduction.
For instance, the time spent on data and control flow verification can drop
from 3 months to 2 weeks.

Quality will also become much more consistent since a much greater part
of the process will be automated. PolySpace tools are equally efficient on a
Friday afternoon and on a Tuesday morning!

Code Acceptance Criterion

Overview

This is likely to be of interest for a quality manager in a company which is
outsourcing software development, and who wishes to impose acceptance
criteria for the code.

The Software Development Process

This section describes how to define transition criteria for intermediate or
final deliveries.

The Obijective of Using PolySpace Verification

The objective is to control and evaluate the safety of an application. The
means for doing so could vary from no red errors to exhaustive oranges review.

The PolySpace Approach

The example list of acceptance criteria below shows increasingly stringent
tests, any or all of which may be adopted.

® No compilation errors

® No compilation warning errors

Applying PolySpace® Verification to Your Development Process

No red code sections

¢ No unjustified gray code section

A selective/exhaustive orange review according to the development process

= 20% orange code sections reviewed or a time base threshold (described in
the previous sections)

= 100% orange code sections reviewed

20% concurrent access graph reviewed

100% concurrent access graph reviewed

Choosing the Type of Verification You Want to
Perform

Finally, before you start using PolySpace products, you must decide what type
of software verification you want to perform. There are two approaches to
code verification that result in slightly different workflows:

* Robustness Verification — Prove that the software works under all
conditions, including “abnormal” conditions. This can be thought of as
“worst case” analysis.

¢ Contextual Verification — Prove that the software works under normal
working conditions. This can limit the amount of analysis that needs to be
done by providing the software with the ranges of various parameters, so
that the code only needs to be verified within these ranges.

By default, PolySpace software assumes you want to perform robustness
verification (full range). However, this approach can lead to many orange
checks in your results.

When performing contextual verification, you can use several PolySpace
options to reduce the number of orange checks. You can use DRS to specify
the ranges for your variables, thereby limiting the verification to these cases.
You also can create a very detailed main generator.

It is important to note that DRS should be used specifically to perform
contextual verification, it is not simply a means to reduce oranges.

2-17

2 Choosing How to Use PolySpace® Software

2-18

Setting Up a Verification
Project

e “Creating a Project” on page 3-2

e “Setting Up Project to Check Coding Rules” on page 3-19

e “Setting Up Project for Generic Target Processors” on page 3-25

e “Setting up Project to Automatically Test Orange Code” on page 3-33

3 Setting Up a Verification Project

Creating a Project

In this section...

“What Is a Project?” on page 3-2

“Project Directories” on page 3-3

“Opening PolySpace Launcher” on page 3-3
“Specifying Default Directory” on page 3-6
“Creating New Projects” on page 3-8
“Opening Existing Projects” on page 3-10
“Specifying Source Files” on page 3-10
“Specifying Include Directories” on page 3-13
“Specifying Results Directory” on page 3-15
“Specifying Analysis Options” on page 3-16
“Configuring Text and XML Editors” on page 3-16

“Saving the Project” on page 3-17

What Is a Project?

In PolySpace software, a project is a named set of parameters for a verification
of your software project’s source files. You must have a project before you can
run a PolySpace verification of your source code.

A project includes:

® The location of source files and include directories
¢ The location of a directory for verification results

® Analysis options

You can create your own project or use an existing project. You create and
modify a project using the Launcher graphical user interface.

A project file has one of the following file types:

Creating a Project

Project Type File Extension Description

Configuration cfg Required for running a
verification. Does not
include generic target

processors.
PolySpace Project ppm For populating a project
Model with analysis options,
including generic target
processors.
Desktop dsk In earlier versions of

PolySpace software, for
running a verification
on a client computer.

Project Directories

Before you begin verifying your code with PolySpace software, you must know
the location of your source files and include files. You must also know where
you want to store the verification results.

To simplify the location of your files, you may want to create a project
directory, and then in that directory, create separate directories for the source
files, include files, and results. For example:

polyspace _project/

® sources
® includes

® results

Opening PolySpace Launcher

You use the PolySpace Launcher to create a project and start a verification.
To open the PolySpace Launcher:

1 Double-click the PolySpace Launcher icon.

3-3

3 Setting Up a Verification Project

3-4

2 If you have both PolySpace Client for C/C++ and PolySpace Client for Ada
products on your system, the PolySpace Language Selection dialog
box will appear.

PolySpace Language Selection |

Select a language

¥ PolySpace for CIC++

" PolySpace for Ada

0K I Cancel

Select PolySpace for C/C++, then click OK.

The PolySpace Launcher window appears:

Creating a Project

Specify Specify include
source files directories
1
e
File Edit Tools Hel|s 1
|Do|alh X al# 3||» @ *| @ ;
4 I
L] - H |
- _l_l Name |
| Fiename | | Absolut| Path | I
Wnalysis options !
1
—General | .
—TargetiCompilation ! SpeCIfY
—Compliance with standards: ana IySIS
—PalySpace inner settings ! options
—PrecizioniEcaling :
—Muttitasking !
1
1
1
1
1
1
1
1
Include directaries [-ada-inclufle-dir] :
1
1
1
1
1
Files extensions [—extensions—for—spec—files]I :
: ! Control
Results Directory [-results-dir] 1 . .
! verification
5| '
PaE 1
1
Send to PolyEpace Server [= &Ex
—_— .
| Cormpile - 0% CDFA : 0% | Levell 0% | Level2: 0% Monitor
00:00:00 00:00:00 00:00:00 00:00:00 progress

1
|

1

1

' '
% Compile Log 1
Stats)
1

Full Log |

View log

The Launcher window has three main sections.

3-5

3 Setting Up a Verification Project

3-6

Use this For...
section...
Upper-left Specifying:

e Source files
® Include directories

¢ Results directory

Upper-right

Specifying analysis options

Lower

Controlling and monitoring a verification

You can resize or hide any of these sections. You learn more about the
Launcher window later in this tutorial.

Specifying Default Directory

PolySpace software allows you to specify the default directory that appears in
directory browsers in dialog boxes. If you do not change the default directory,
the default directory is the installation directory. Changing the default
directory to the project directory makes it easier for you to locate and specify
source files and include directories in dialog boxes.

To change the default directory to the project directory:

1 Select Edit > Preferences.

The Preferences dialog box appears.

Creating a Project

2 Select the Default directory tab.

3-7

3 Setting Up a Verification Project

x

3-8

Tools hdenu I Remote Launcherl Miscellaneuusl Feszult directory Default directory |

Default falder for all brovesers.

i* Alvways uze thiz specific folder |Cpolyspace_project

" Uze the current path as a default folder

(0] ,9 Apaly Cancel

3 Select Always use this specific folder if it is not already selected.
4 Enter or navigate to the project directory you want to use.

5 Click OK to apply the changes and close the dialog box.

Creating New Projects
To create a new project:

1 Select File > New Project.

The Choose the language dialog box appears:

Creating a Project

Bl Choose the language x|

i~ crp

(0] 4 I Cancell

2 Select C, then click OK.
The default project name, New_Project, appears in the title bar.

In the Analysis options section, the General options node expands with
default project identification information and options.

PolySpace Launcher for C - New_Project ;IE

File Edit Tools Help

|DowW b & 0 # B

» O | @

Mewy Project

_I File Marme

Matne I “alue

Absolute Path

4
"'l - | | Search internal name from the selected Iine:l ,@ | [

W halyziz options

lJ—]—GeneraI
—Session identifier Mesy Project
—Date 21042005
—&uthar YOUr rEme
—Project version 1.0

—Examine effects of scalar assignments
—Heep all intermediate files
—Cortinue even if red errors are detected

—Cartinue with the current configuration

|| |

—Cartinue even an an unsupparted Linu dis
[E-TargetiCompilation
Dmpliance with standards

DI\;Space inner settings

Ihclude directories [-] I recisionISu:aIing

ult'rtasking

3-9

3 Setting Up a Verification Project

Opening Existing Projects
To open an existing project:
1 Select File > Open Project.
The Please select a file dialog box appears.
2 Select the project you want to open, then click OK.

The selected project opens in the Launcher.

HPuIySpace Launcher for C - New_Project - |E

File Edit Tools Help

Do D & 328 » @ > e

Rl Project i| ;l : Search internal name from the selected line | I yaNn
: Mame I allie
| Fiename | Ahsolute Path I —
A nalysis options
lj—]—GeneraI
—Session identifier Mewy Project
—Date 21/04/2008
—&uthar YOUF Eme
—Praoject version 1.0

—Examine effects of scalar azsignments
—Heep all intermediate files
—Cartinue even if red errars are detected

—Cortinue with the current configuration

| o 3

—Cortinue even on an unsupported Linu dig
[H-TargetiCompilation
ompliance wvith standards

onSpace inner settings
I Ihclude directories [-] I Precisions=caling
ult'rtasking

Specifying Source Files

To specify the source files for your project:

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

3-10

Creating a Project

|
The Please select a file dialog box appears.

Please select a file
Loak ir: ace_project

() includes
(L0 resutts
(50 sources

I(" .z} files anly
™ Recurse subdirectories

~Source files [-sources]

~Directories to include [-1]

[~ [[~ [

Ok Cancel

2 In the Look in field, navigate to your project directory containing your
source files.

3 Select the files you want to verify, then click the green down arrow button
in the Source files section.

r

The path of each source files appear in the source files list.

3-11

3 Setting Up a Verification Project

3-12

Tip You can also drag directory and file names from an open directory
directly to the source files list or include list.

4 Click OK to apply the changes and close the dialog box.

The source files you selected appear in the files section in the upper left of
the Launcher window.

ey Project -rl — | |

Absolute Path

ace_projectisources

File Mame

example.c

p1L

| Ihclude directaries [-]

- |C:ﬁpulyspaCEJ:urnjec't\jncludes

Results Directony [-results-dir]

CZWpDI?SpECEJJrDjEDﬂ.I’Esuﬂsl - |

Creating a Project

Specifying Include Directories
To specify the include directories for the project:

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

|
The Please select a file dialog box appears.

HPIease select a file
Loak in: (== polyspace_project

uﬁ inchudes
Lﬂ results
L) sources

I(* . files anly
[Recurse subdirectories

—Source files [-sources]

—Directaries ta include [-1]

2| o 2

Ok | Cancel |

2 In the Look in field, navigate to your project directory.

3 Select the directory containing the include files for your project, then click
the green down arrow button in the Directories to include section.

3-13

3 Setting Up a Verification Project

3-14

H

The path for each include directory appears in the source files list.
4 Click OK to apply the changes and close the dialog box.

The include directories you selected appear in the Include directories

section on the left side of the Launcher window.

ey Project -rl — | |

Absolute Path

Chpolyspace_projectisources

File Mame

example.c

p1L

| Ihclude directaries [-]

- |C:ﬁpulyspaCEJ:urnjec't\jncludes

Results Directony [-results-dir]

CZWpDI?SpECEJJrDjEDﬂ.I’Esuﬂsl - |

Creating a Project

Specifying Results Directory

To specify the results directory for the project:

1 In the Results Directory section of the Launcher window, specify the
full path of the directory that will contain your verification results. For
example: C:\polyspace_project\results.

The files section of the Launcher window now looks like:

ey Project rl — | |

Absolute Path

Ce_projectisources

File Mame

example.c

p1L

2ol

| Ihclude directaries [-]

- |C:ﬁpulyspaCEJ:urnjec't\jncludes

Results Directony [-results-dir]

Clpolyvspace J:uru:ujecﬂresurts| -

3-15

3 Setting Up a Verification Project

3-16

Specifying Analysis Options

The analysis options in the upper-right section of the Launcher window
include identification information and parameters that PolySpace software
uses during the verification process.

To specify General parameters for your project:

1 In the Analysis options section of the Launcher window, expand General.

2 The General options appear.

Marne Walue Ihternal name

Analyziz options

f—]—General

—Sesszion iderntifier Example Project prog

—Late 11M 252005 -clate

—Authar LUSEF natme Fauthar

—Project wersion 1.0 Lverif-verzion

—Heep all intermediste files r Fkeep-all-files

—Continue with the current configuration ¥ Foortinue-with-gxisting-host
—Continue even on an unsupported Linus r Fallow-unzupparted-linux

F-TargetCompilstion

u:umplian-:e weith standards

DIySpace inner settings

recisinnﬂcaling

urti'tasking

3 Specify the appropriate general parameters for your project.

For detailed information about specific analysis options, see “Option
Descriptions”in the PolySpace Products or C Reference.

Configuring Text and XML Editors

Before you running a verification you should configure your text and XML
editors in the Viewer. Configuring text and XML editors in the Viewer allows
you to view source files and MISRA® reports directly from the Viewer logs.

Creating a Project

To configure your text and .XML editors:

1 Select Edit > Preferences.
The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

H Preferences

Toolz henu I Remnte | auncher
Mizcellaneous I Result directory | Default directory | E drtorsl

x|

Generic targets

~HML editar configuration
Specify the full psth to a XML editor or use the brawse buttan.

WML Editar: IC:'I.F‘ngram Filez"M=0tficelDifice! XEXCEL EXE

o

~Text editar configuration

Specify the full path to a text editor ar use the browese button.

Text Edlitor: IC:'I.F‘ru:ugram FilesWindows NTWCcessoriesweordpad exe

Specify the command line arguments for the text editor,

Arguments: I

The fallowing macros can be uzed FFILE, 3LIMNE, FCOLLIMN

o

Ol Apply

Cancel

3 Specify an XML editor to use to view MISRA-C reports.

4 Specify a Text editor to use to view source files from the Viewer logs.

5 Click OK.

Saving the Project
To save the project:

3-17

3 Setting Up a Verification Project

1 Select File > Save project. The Save the project as dialog box appears.

x
Laok ir: I[ﬁ polyspace_project ;I ¥ [3

ﬁ I includes
i I resutts

P e |75 sources

Session idertifier | Ok

File= of type: I*_ng ll Cancel

2 In Look in, select your project directory.
3 In Session identifier, enter a name for your project.

4 Click OK to save the project and close the dialog box.

3-18

Setting Up Project to Check Coding Rules

Setting Up Project to Check Coding Rules

In this section...

“PolySpace MISRA Checker Overview” on page 3-19

“Checking Compliance with MISRA C Coding Rules” on page 3-19
“Creating a MISRA C Rules File” on page 3-20

“Excluding Files from the MISRA C Checking” on page 3-23

PolySpace MISRA Checker Overview

PolySpace software can check that C code complies with MISRA C 2004
standards.?

The MISRA checker enables PolySpace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification. The MISRA checker can check nearly all of
the 141 MISRA C:2004 rules.

Note The PolySpace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

Checking Compliance with MISRA C Coding Rules

To check MISRA C compliance, you set an option in your project before
running a verification. PolySpace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

3-19

http://www.misra-c.com/

3 Setting Up a Verification Project

The Compliance with standards options appear.
2 Select the Check MISRA-C:2004 rules check box.
3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and directories to ignore,
appear.

Marne Walue Irternal harme

Analyziz options

eneral
Target.l‘CDmpilatil:un
f—]—CDmpliance with standards

—Code fram DOS o Windowes filesystem 7 ooz
F-Ermbedded assembler
[F-Strict r strict
Permizzive I ~pernissive
f—]—Check MISRA-C: 2004 rules W

—Fules configuration ... |-misraZ

—Files and directaries to ignore ... Hncludes-to-ignore
FHKeillAR support defaut | dlislect

FH-PolySpace inner settings
reu:isiu:un.l’Su:aIing
urt'rtasking

4 Specify which MISRA C rules to check and which, if any, files to exclude
from the checking.

Note For more information on using the MISRA C checker, see Chapter
11, “MISRA Checker”.

Creating a MISRA C Rules File

You must have a rules file to run a verification with MISRA C checking.

3-20

Setting Up Project to Check Coding Rules

Opening a New Rules File
To open a new rules file:

1 Click the button I—l to the right of the Rules configuration option.
A window for opening or creating a MISRA C rules file appears.
2 Select File > New File.

A table of rules appears.

3-21

3 Setting Up a Verification Project

3-22

Rules Errar I WNarning Off

MISRA C rules

I—Numl::ner af rules by mode 7 1 134

Ervironnerit

2 Language extenszions

3 Documentation

Character zets

Identifiers

Types

I-' Constants

Declarations and definitions

Initiali=ation

0 Arithmetic type conversions

1 Painter type conversions

2 Exrezsions

3 Cantrol statement expressions

4 Cortrol flowy

5 Swyitch statements

f—]—’l B Functions
—16.1 Functionz shall nat be defined with variable numbers of arguments. f" - o
—16.2 Functions shall nat call themselves, either directly or indirectly. f" - o
—16.3 ldentifiers shall he given for all of the parameters in & function prototy o - f"
—16.4 The identifiers used in the declarstion and defintion of 2 function shall © 8 =
—16.2 Functions wvith ho parameters shall be declared with parameter type f" f" o
—16.6 The number of arguments passed to a function shall match the numbe f" f" o
—I16.7 & pointer parameter in a function protatype should be declared as poi f" « g
—16.5 Al exit paths from a function with non-void return type shall have an ¢ r ':H o
—16.9 & function identifier shall only be used with either a preceding & or f" f" o
—1 G610 If & function returns error information, then that error information sha © © g

=17 Pointer and arrays
—17.1 Pointer arithmetic shall only be applied to pointers that address an arrs © © g
—17.2 Pointer subtraction shall only be applied to pointers that address elems © © g
—17.3 =, == = == shal not be applied to pointer types except where they po © © g
—17.4 Array indexing shall be the only allowed form of poirter arithmetic. f" o f"
—17.5 The declaration of objects should contain no more than 2 levels of poi f" f" o
—17 6 The address of an ohject with automstic storage shall not be azsigne r i "

[+18 Structures and unions

9 Preprocessing directives

2IZI Standard libraries

[#-21 Rur-time failures

Setting Up Project to Check Coding Rules

3 For each rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

4 Click OK to save the rules and close the window.
The Save as dialog box opens.
5 In File, enter a name for the rules file.

6 Click OK to save the file and close the dialog box.

Excluding Files from the MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the

project example.cfg:

1 Click the button I_I to the right of the Files and directories to ignore
option.

2 Click the folder icon.

=]

The Select a file or directory to include dialog box appears.

3-23

3 Setting Up a Verification Project

3 Select the files or directories (such as include files) you want to ignore.
4 Click OK.
The selected files appear in the list of files to ignore.

5 Click OK to close the dialog box.

3-24

Setting Up Project for Generic Target Processors

Setting Up Project for Generic Target Processors

In this section...
“Project Model Files” on page 3-25

“Creating Project Model Files” on page 3-26
“Viewing Existing Generic Targets” on page 3-26
“Defining Generic Targets” on page 3-27
“Deleting a Generic Target ” on page 3-30
“Common Generic Targets” on page 3-30

“Creating a Configuration File from a PolySpace Project Model File” on
page 3-31

Project Model Files

What Is a PolySpace Project Model File?

A PolySpace project model file is a project file that includes generic target
processors. You can use this file to share project information with your
development team.

Although you can populate a project with information, such as source files and
project options, from a project model file, you cannot run a verification with a
project model file. You must have a configuration file to run a verification.

Workflow for Using Project Model Files

A PolySpace project model file is a project file that includes generic target
processors. A development team uses this file to share project information.
The workflow is:

1 A team leader creates a project model file (. ppm). This file has the analysis
options for the project, including generic targets.

2 The team leader distributes the .ppm file to the team.

3-25

3 Setting Up a Verification Project

3-26

3 A developer opens the .ppm file. From this file, PolySpace software
populates the project parameters and the generic targets in the preferences.

4 The developer adds source files, include directories, and a results directory
to the project and saves it as a configuration file (.cfg).

5 The developer launches a verification with the.cfg file.

Creating Project Model Files

You use the PolySpace Launcher to create a PolySpace project model file.

To create a project model file:
1 Select File > New Project to create a new project.
2 Define the generic target, as described in the following sections.
3 Select File > Save project.
The Save the project as dialog box appears.
4 Select *.ppm from the Files of type menu.
5 In Session identifier, enter a name for your project model file.

6 Click OK to save the file and close the dialog box.

Viewing Existing Generic Targets
Generic targets that you create are listed in the Preferences dialog box.

To view existing generic targets:
1 Select Edit > Preferences.
The Preferences dialog box appears.

2 Select the Generic targets tab.

Previously defined generic targets appear in the generic targets list.

Setting Up Project for Generic Target Processors

target

Eclit

Remove

3 Click Cancel to close the dialog box.

Defining Generic Targets

If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the PST Generic target,
and specifying the characteristics of your processor.

To configure a generic target:

To define a generic target:
1 In Analysis options, expand Target/Compilation.

2 Click the down arrow to open the Target processor type menu.

3-27

3 Setting Up a Verification Project

SpaErc =]

mGSk

PO ErIC

i356

c-167

32005
sharc21x61
necyEsl

b5

b2

FfICSy

----P=T Generic----
rcpu. .. [Advanced)

3 Select mcpu... (Advanced).

The Generic target options dialog box appears.

3-28

Setting Up Project for Generic Target Processors

Hﬁeneric target options

Enter the target name

Default result of siored right shitt |rithmetical (Default) =
ghitz 1Bhitz 32kitz Bdhits
Char v [o =V sigred
Short [) i o
It o G " e
Long i i i+ [
Lang long o o v i
Flot o r v e
Doublelong double e (8 O e
Painter o O] [o
Alignment e 8 i [
Save Carncel

4 In Enter the target name, enter a name for your target.

5 Specify the appropriate parameters for your target, such as the size of basic
types, and alignment with arrays and structures.

For example, when the alignment of basic types within an array or
structure is always 8, it implies that the storage assigned to arrays and
structures is strictly determined by the size of the individual data objects
(without fields and end padding).

Note For more information, see “GENERIC ADVANCED TARGET
OPTIONS”in the PolySpace Products for C Reference.

3-29

3 Setting Up a Verification Project

3-30

6 Click Save to save the generic target options and close the dialog box.

Deleting a Generic Target
Generic targets that you create are stored as a PolySpace software preference.
Generic targets remain in your preferences until you delete them.

Note You cannot delete a generic target if it is the currently selected target
processor type for the project.

To delete a generic target:
1 Select Edit > Preferences.

The Preferences dialog box appears.
2 Select the Generic targets tab.
3 Select the target you want to remove.
4 Click Remove.

5 Click OK to apply the change and close the dialog box.

Common Generic Targets
The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST17 char | short|int |long |long |float | doublel long | ptr char is | endian
long double

size 8 16 16 32 32 32 32 32 16/32 | unsigned| Big

alignment| 8 16/8 | 16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | N/A N/A

Setting Up Project for Generic Target Processors

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char | short| int | long long | float | double| long | ptr char is | endian

long double
size 8 16 16 32 32 32 64 64 16/64 | unsigned| Big
alignment| 8 8 8 8 8 8 8 8 8 N/A N/A
Hitachi H8/300, H8/300L
Hitachi | char | short| int |long |long | float | double| long | ptr char is | endian
H8/300 long double
H8/300L
size 8 16 16/32| 32 64 32 654 64 16 unsigned| Big
alignment| 8 16 16 16 16 16 16 16 16 N/A N/A
Hitachi H8/300H, H8S, H8C, H8/Tiny
Hitachi | char | short| int | long long | float | double| long | pir char is | endian
H8/300H, long double
H8S,
H8C,
H8/Tiny
size 8 16 16/ 32 64 32 64 64 32 unsigned| Big

32
alignment| 8 16 32/ 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A
16

Creating a Configuration File from a PolySpace
Project Model File

To run a verification, you must have a configuration file, not just a project
model file. However, you can create a configuration file from a project model

file.

To create a configuration file from a project model file:

3-31

3 Setting Up a Verification Project

1 Open the project model file.

Note When opening files, you can select Project Model (*.ppm) files in
the File of type section to view only project model files.

Opening the project model file populates the:
® Generic targets in the preferences

® Analysis options and other project information

2 Enter additional project information, such as the results directory and
source files.

Note If you enter the results directory and source files in the project before
you save it as a PolySpace project model file, then that information is saved
in the file and appears in the project when you open the file.

3 Select File > Save project.

The Save the project as dialog box appears.
4 Enter a name for your configuration file.
5 Leave the default type as *.cfg.

6 Click OK to save the project and close the dialog box.

3-32

Setting up Project to Automatically Test Orange Code

Setting up Project to Automatically Test Orange Code

In this section...

“PolySpace Automatic Orange Tester” on page 3-33

“Enabling the Automatic Orange Tester” on page 3-33

PolySpace Automatic Orange Tester

The PolySpace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you identify the cause of these errors.

The Automatic Orange Tester complements the results review in the Viewer
by automatically creating test cases for all input variables in orange code, and
then dynamically testing the code to find actual runtime errors.

For more information, see “Automatically Testing Orange Code” on page 9-26.

Enabling the Automatic Orange Tester

Before you can use the Automatic Orange Tester, you must run a PolySpace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To enable the automatic orange tester:

1 In the Analysis Options window, expand the PolySpace inner settings
menu.

2 Select the Automatic Orange Tester check box.

3-33

3 Setting Up a Verification Project

FeNpry)

Search interhal natme from the selected line I
I Irternal harme |

ETS alue

Analysis options
eneral
TargetJ‘Cn:nmpilatin:nn
l:nmplian-:e writh standards
f—]—PDIySpace inner zettings
enerate a mair v -main-generstor

[F-Stubking

fﬂ—.ﬂ.ssummiuns
¥

Fprepare-automatic-tests

Automatic Orange Tester

[F-Cthers
[FH-PrecizioniScaling

urt'rtasking

The -prepare-automatic-tests option is enabled.

For more information on using the Automatic Orange Tester, see
“Automatically Testing Orange Code” on page 9-26.

3-34

Emulating Your Runtime
Environment

e “Setting Up a Target” on page 4-2
* “Verifying an Application Without a “Main™ on page 4-22

* “Applying Data Ranges to External Variables and Stub Functions (DRS)”
on page 4-25

4 Emulating Your Runtime Environment

Setting Up a Target

In this section...

“Target/Compiler Overview” on page 4-2
“Specifying Target/Compilation Parameters” on page 4-2

“Predefined Target Processor Specifications (size of char, int, float,
double...)” on page 4-3

“Generic Target Processors” on page 4-5

“Compiling Operating System Dependent Code (OS-target issues)” on page
4-5

“Address Alignment” on page 4-9

“Ignoring or Replacing Keywords Before Compilation” on page 4-10
“Verifying Code That Uses KEIL or IAR Dialects” on page 4-13
“How to Gather Compilation Options Efficiently” on page 4-19

Target/Compiler Overview

Many applications are designed to run on specific target CPUs and operating
systems. The type of CPU determines many data characteristics, such as
data sizes and addressing. These factors can affect whether errors (such as
overflows) will occur.

Since some run-time errors are dependent on the target CPU and operating
system, you must specify the type of CPU and operating system used in the
target environment before running a verification.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Specifying Target/Compilation Parameters

The Target/Compilation options in the Launcher allow you to specify the
target processor and operating system for your application.

To specify target parameters for your project:

Setting Up a Target

1 In the Analysis options section of the Launcher window, expand
Target/Compilation.

2 The Target/Compilation options appear.

Mame Walue Internal name
Analyzis options:
eneral
f—]—TargeﬂCDmpilaﬂun
—Target processor type Sparc ;I ... |Harget
—Operating system target for PolySpace stubs Solaris | HOE target
—Defined Preprocessor Macros o
—ndefined Preprocessar Macros .
—Include . Hnclude
—Commandizeript to apply to preprocessed files ... |Fpost-preprocessing-command
—Commandizcript to apply after the end of the code verification ... fpost-analysis-command
FCompliance with standards
DIySpace inner zettings
rec:isin:nn!Sc:aling
urt'rtasking

3 Specify the appropriate parameters for your target CPU and operating
system.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Predefined Target Processor Specifications (size of
char, int, float, double...)

PolySpace software supports many commonly used processors, as listed in the
table below. To specify one of the predefined processors, select it from the
Target processor type drop-down list.

If your processor is not listed, you can specify a similar processor that shares
the same characteristics.

4-3

4 Emulating Your Runtime Environment

4-4

Note The targets Motorola ST7, ST9, Hitachi H8/300, H8/300L, Hitachi
H8/300H, H8S, H8C, H8/Tiny are described in the next section.

Target char | short| int | long| long | float doublé long | ptr| char is | Endian | ptr diff
long double type
sparc 8 16 32 | 32 64 32 64 128 32 | signed Big int, long
1386 8 16 32 | 32 64 32 64 96 32 | signed Little int, long
c-167 8 16 16 | 32 32 32 64 64 16 | signed Little int
m68k / 8 16 32 | 32 64 32 64 96 32 | signed Big int, long
ColdFire?
powerpc 8 16 32 | 32 64 32 64 128 32 | unsigned| Big int, long
tms320c3x | 32 32 32 | 32 64 32 32 40* 32 | signed Little int, long
sharc21x61 32 32 32 | 32 64 32 325 64 32 | signed Little int, long
NEC-V850 | 8 16 32 | 32 32 32 32 64 32 | signed Little int
hcos © 8 16 16 | 32 32 32 32 32 %6 unsigned| Big int
hc12 3 8 16 16 | 32 32 32 32 32 32 | signed Big int
4
mpc5xx 8 16 32 | 32 64 32 32 32 32 | signed Big int, long
(#3)
If your target processor does not match the characteristics of any processor
described above, contact The MathWorks technical support for advice.

3. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor

4. All operations on long double values will be imprecise (that is, shown as orange).

5. On this target, a double may be 32 or 64 bits long. Only 32 bits double are supported.

6. Non ANSI C specified keywords and compiler implementation-dependent pragmas and

7.

interrupt facilities are not tokens into account by this support

all kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width
physically.

Setting Up a Target

Note The following table describes target processors that are not fully
supported by PolySpace software, but for which you can still perform
verification. In these cases, you should select the target processor listed in
the “Nearest Processor” column. The characteristics that are not identical
between the target processor and its equivalent are highlighted in red below.
You should take these differences into account when reviewing verification
results.

Target char| short| int Iond long roaJ double long | ptr | char | ptr diff | Nearest
long double is type target
processor
tms470rlx| 8 16 32 |32 |N/A |32 |64 648 32 signed | int, long | 1386
tms320c2x | 16 16 16 |32 | N/A | 32 32 32 16 signed | int Unsupported

Generic Target Processors

If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the PST Generic target,
and specifying the characteristics of your processor.

For more information, see “Setting Up Project for Generic Target Processors”
on page 3-25.

Compiling Operating System Dependent Code
(OS-target issues)

This section describes the options required to compile and verify code designed
to run on specific operating systems. It contains the following:

e “List of Predefined Compilation Flags” on page 4-6

o “My Target Application Runs on Linux” on page 4-8

o “My Target Application Runs on Solaris” on page 4-8

e “My Target Application Runs on Vxworks” on page 4-9

8. All operations on long double values will be imprecise (that is, shown as orange).

4-5

4 Emulating Your Runtime Environment

o “My Target Application Does Not Run on Linux, vxworks nor Solaris” on
page 4-9

List of Predefined Compilation Flags

These flags concern predefined OS-target: no-predefined-OS, linux, vxworks,
Solaris and visual (-0S-target option).

OS-target Compilation flags —include file and content
no-predefined-OS -D__STDC__
visual -D__STDC___ -include
<product_dir>/cinclude/pst-visual.h

vxworks -D__STDC__ -include

-DANSI_PROTOTYPES <product_dir>/cinclude/pst-vxworks.h

-DSTATIC=

-DCONST=const

-D__STDC__

-D__GNUC__ =2

-Dunix

-D__unix

-D__unix__

-Dsparc

-D__sparc

-D__sparc__

-Dsun

-D__sun

-D__sun__

-D__svr4__

-D__SVR4

Setting Up a Target

OS-target

Compilation flags

—include file and content

linux

-D__STDC__
-D__GNUC__ =2
-D__GNUC_MINOR__=6
-D__GNUC__ =2
-D__GNUC_MINOR__=6
-D__ELF__

-Dunix

-D__unix
-D__unix__
-Dlinux
-D__linux
-D__linux__
-Di386

-D__ 1386
-D__i386__
-Di686

-D__ 1686

-D__ 1686
-Dpentiumpro
-D__pentiumpro
-D__pentiumpro__

<product_dir>/cinclude/pst-1linux.h

Solaris

-D__STDC__
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GNUC__=2
-D__GNUC_MINOR__=8
-D__GCC_NEW_VARARGS___
-Dunix

-D__unix
-D__unix__

-Dsparc

-D__sparc
-D__sparc__

-Dsun

-D__sun

-D__sun__
-D__svr4__
-D__SVR4

No -include file mentioned

4-7

4 Emulating Your Runtime Environment

Note The use of the OS-target option is entirely equivalent to the following
alternative approaches.

® Setting the same -D flags manually, or

e Using the -include option on a copied and modified pst-OS-target.h file

My Target Application Runs on Linux
The minimum set of options is as follows:

polyspace-c \
-0S-target Linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-1linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-1linux/next \

where the PolySpace product has been installed in the directory
/usr/local/PolySpace/ CURRENT-VERSION.

If your target application runs on Linux® but you are launching your
verification from Windows, the minimum set of options is as follows:

polyspace-c \
-0S-target Linux \
-I POLYSPACE_C\Verifier\include\include-linux \
-I POLYSPACE_C\Verifier\include\include-linux\next \

where the PolySpace product has been installed in the directory POLYSPACE_C.

My Target Application Runs on Solaris
If PolySpace software runs on a Linux machine:

polyspace-c \
-0S-target Solaris \
-I /your_path_to_solaris_include

Setting Up a Target

If PolySpace runs on a Solaris™ machine:

polyspace-c \
-0S-target Solaris \
-I /usr/include

My Target Application Runs on Vxworks
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \
-0S-target vxworks \
-I /your_path_to/Vxworks_include_directories

My Target Application Does Not Run on Linux, vxworks nor
Solaris
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-c \
-0S-target no-predefined-0S \
-I /your_path_to/MyTarget_include_directories

Address Alignment

PolySpace handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard
which guarantee that:

¢ that global sizeof and offsetof fields are optimum (i.e. as short as
possible);

¢ the alignment of all addressable units is respected;

® global alignment is respected.
Consider the example:

struct foo {char a; int b;}

4 Emulating Your Runtime Environment

e Each field must be aligned; that is, the starting offset of a field must be
a multiple of its own size®

® So in the example, char a begins at offset 0 and its size is 8 bits. int b
cannot begin at 8 (the end of the previous field) because the starting offset
must be a multiple of its own size (32 bits). Consequently, int b begins at
offset=32. The size of the struct foo before global alignment is therefore
64 bits.

® The global alignment of a structure is the maximum of the individual
alignments of each of its fields;

® In the example, global alignment = max (alignment char a,
alignment int b) = max (8, 32) 32

® The size of a struct must be a multiple of its global alignment. In our case,
b begins at 32 and is 32 long, and the size of the struct (64) is a multiple of
the global alignment (32), so sizeof is not adjusted.

Ignoring or Replacing Keywords Before Compilation

You can ignore noncompliant keywords such as “far” or 0x followed by an
absolute address. The template provided in this section allows you to ignore
these keywords.

To ignore keywords:

1 Save the following template in ¢c: \PolySpace\myTpl.pl.

2 In the Target/Compilation options, select Command/script to apply to
preprocessed files.

3 Select myTpl.pl using the browse button.

For more information, see -post-preprocessing-command.

Content of the myTpl.pl file

#!/usr/bin/perl

HHRBBHAHARBRAHHARBRHH AR BB AAHAR B R AR R AR AR AR R B A AR AR BB A HH AR HHH

except in the cases of “double” and “long” on some targets.

Setting Up a Target

Post Processing template script

#

HHBBHBHHAR BB HHH AR BB H R R AR BB H AR R TR B R R R R H AR BB H
Usage from Launcher GUI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Solaris: /usr/local/bin/perl PostProcessingTemplate.pl

3) Windows: \Verifier\tools\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl

#

HHRBRBHHAR BB R HH R R R H R R BB H AR BB H R AR R TR B R R R R H AR HH

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

Remove far keyword
s/far//;

Remove "@ OxFE1" address constructs
s/\@\sOx[A-F0-91*//g;

Remove "@OXFE1" address constructs
s/\@Ox[A-F0-9]*//g;

Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\ (\ (unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

Convert current line to lower case
$_ =~ tr/A-Z/a-z/;

Print the current processed line

print $OUTFILE $_;
}

4-11

4 Emulating Your Runtime Environment

Perl Regular Expression Summary

HEBHHBHRBHHARHHBRH AR BRRA B R B R AR BRR BB AR R R R B R BB HH
Metacharacter What it matches
HEBHABHHBHHARHHBRHARHRBRRA B R B R AR R B R BB R BB R B R R R HH
Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[*a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as ["0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

Whitespace Characters

\s Whitespace character

\S Non-whitespace character
\n newline

\r return

\t tab

\f formfeed

\b backspace

Anchored Characters

\B word boundary when no inside []
\B non-word boundary

~ Matches to beginning of line

$ Matches to end of line

Repeated Characters

x? 0 or 1 occurence of x

Xx* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively

to|be|great One of "to", "be" or "great"

Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses

o3 H I I W O O W O O W O I W I W W oI W W O W O O W O O W W W W O W W

4-12

Setting Up a Target

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses
HURHHBHHBHHHBHHBHH AR SRR BB R AR TR H RS HBHH TR H B H TR SR B H TS
Back referencing

#
#
e.g. swap first two words around on a line
red cat -> cat red

s/ (\wt) (\w+)/$2 $1/;

#

HARBRAAHARBHAHARRBHAHARBRAHAARBHAH AR BB AHAARBHAH AR HAREH

Verifying Code That Uses KEIL or IAR Dialects

Typical embedded control applications frequently read and write port data,
set timer registers and read input captures. To deal with this without using
assembly language, some microprocessor compilers have specified special data
types like sfrand sbit. Typical declarations are:

sfr AO 0x80
sfr A1 0x81
sfr ADCUP OxDE
sbit EI Ox9F

These declarations reside in header files such as regxx.h for the basic 80Cxxx
micro processor. The definition of sfr in these header files customizes the
compiler to the target processor.

When accessing a register or a port, using sfr data is then simple, but is
not part of standard ANSI C:

{
ADCUP = 0x08; /* Write data to register */

A1 = OxFF; /* Write data to Port */
status = PO; /* Read data from Port */
EI = 1; /* Set a bit (enable all interrupts) */

}

You can verify this type of code using the Kiel/TAR support option
(-dialect). This option allows the software to support the Keil or IAR C
language extensions even if some structures, keywords, and syntax are not

4-13

4 Emulating Your Runtime Environment

4-14

Example: -dialect keil -sfr-types sfr=8

ANSI standard. The following tables summarize what is supported when
verifying code that is associated with the keil or iar dialects.

The following table summarizes the supported keil C language extensions:

Type/Language | Description Example Restrictions
Type bit ® An expression to type . pointers to bits and
bit gives values in bit x =0, y =1, arrays of bits are
range [0,1]. z = 2; not allowed
. assert(x == 0);
® Converting an assert(y == 1);
expression in the assert(z == 1);
type, gives 1 if it is assert(sizeof (bit)
not equal to 0, else == sizeof(int));
0. This behavior is
similar to c++ bool
type.
Type sfr e The -sfr-types option sfr and sbit types

defines unsigned
types name and size
in bits.

® The behavior of
a variable follows
a variable of type
integral.

e A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = O0xf0; //
declaration of
variable x at
address OxFO
sfr16 y = Ox4EEF;

For this example, options
need to be:

-dialect
keil sfr
-types sfr=8,
sfr16=16

are only allowed
in declarations of
external global
variables.

Setting Up a Target

Example: -dialect keil -sfr-types sfr=8 (Continued)

Type/Language

Description

Example

Restrictions

Type sbit

e EKach read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

® Only external global
variables can be
mapped with a sbit
variable.

* Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

® g variable can also
be declared as extern
bit in an another file.

sfr x = OxFO;

sbit x1 = x ~ 1;
sbit x2 = OxFO ~ 2;
sbit x3 = OxF3;
sbit y0 = t[3] ~ 1;
/* filel.c */

sbit x = PO * 1;

/* file2.c */
extern bit x;
X =1;

// 1st bit of x
// 2nd bit of x
// 3rd bit of x

// set the 1st bit of PO to 1

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ OxFO
int x @ OxFE ;
static const

int y @ OxA0 = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

Interrupt
functions

A warnings in the log
file is displayed when an
interrupt function has
been found: "interrupt
handler detected :
<name>" or "task
entry point detected :
<name>"

void fool (void)
interrupt XX =YY
using 99 { }

void foo2 (void) _
task_ 99 _priority_
2 {1}

Entry points and

interrupts are not
taken into account
as -entry-points.

Keywords ignored

alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large,
reentrant. Defining -D _ C51__, keywords large code, data, xdata, pdata

and xhuge are ignored.

4-15

4 Emulating Your Runtime Environment

4-16

Example: -dialect iar -sfr-types sfr=8

The following table summarize the iar dialect:

Type/Language

Description

Example

Restrictions

Type bit

® An expression to type
bit gives values in
range [0,1].

e Converting an
expression in the
type, gives 1 if it is
not equal to 0, else
0. This behavior is
similar to c++ bool

type.

e If initialized with
values 0 or 1, a
variable of type bit
1s a simple variable
(like a c++ bool).

e A variable of type
bit is a register bit
variable (mapped
with a bit or a sfr

type)

bit y1
bit x4
bit x5

X . 4;
OxFO

of s.y.z is
set to 1

S.y.z2.2;

. 5;
yl = 1; // 2nd bit

pointers to bits and
arrays of bits are
not allowed

Type sfr

® The -sfr-types option
defines unsigned
types name and size.

e The behavior of
a variable follows
a variable of type
integral.

® A variable which
overlaps another one
(in term of address)

sfr x = 0xf0; //
declaration of
variable x at
address OxFO

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions
will be considered as
volatile.

Individual bit ® Individual bit .

access can be accessed int x[3], vy;

without using sbit/bit
variables.

® Type is allowed for
integer variables,
cells of integer array,
and struct/union
integral fields.

x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ OxFO
int x @ OxFE ;
static const

int y @ OxA0O = 3;

Absolute variable
locations are
ignored (even if
declared with a
#pragma location).

Interrupt
functions

A warnings in the log
file is displayed when an
interrupt function has

interrupt [XX]
using [99] void

Entry points and
interrupts are not
taken into account

been found: "interrupt f°°1_ (void) { } as -entry-points.
handler detected : monitor [YY] foo2
funcname" (void) { }

Keywords ignored | saddr, reentrant, reentrant_idata, non_banked, plm, bdata,
idata, pdata, code, data, xdata, xhuge, interrupt, __ interrupt

and __intrinsic

4-17

4 Emulating Your Runtime Environment

4-18

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions
Unnamed e Fields of _ .
struct/union unions/structs with union { int x; };

no tag and no name
can be accessed

without naming their

parent struct.

¢ Option

-allow-unnamed-fiel

need to be used to
allow anonymous
struct fields.

® On a conflict
between a field of
an anonymous struct

with other identifiers:

= with a variable
name, field name
is hidden

= with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

= with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict®
is displayed in the
log file.

union { int y; struct { int

z; };

} @ OxFO;

Setting Up a Target

Example: -dialect iar -sfr-types sfr=8 (Continued)

Type/Language | Description Example Restrictions
no_init attribute | ® a global variable S #pragma no_init
declared with this no_}n}t 1”1‘ X; has no effect
attribute is handled noflnlt union
like an external { int y; } @ OxFE;
variable.
e It is handled like a
type qualifier.

The option sfr-types defines the size of a sfr type for the keil or iar dialect.
The syntax for an sfr element in the list is type-name=typesize.
For example:
sfr-types sfr=8,sfr16=16
defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of

16-bits. A value type-name must be given only once. 8, 16 and 32 are the
only supported values for type-size.

Note As soon as an sfr type is used in the code, you must specify its name
and size, even if it is the keyword sfr.

Note Many IAR and Keil compilers currently exist that are associated to
specific targets. It is difficult to maintain a complete list of those supported.

How to Gather Compilation Options Efficiently

The code is often tuned for the target (as discussed to “Verifying Code That
Uses KEIL or IAR Dialects” on page 4-13). Rather than applying minor
changes to the code, create a single polyspace.h file which will contain all

4-19

4 Emulating Your Runtime Environment

4-20

target specific functions and options. The -include option can then be used to
force the inclusion of the polyspace.h file in all source files under verification.

Where there are missing prototypes or conflicts in variable definition, writing
the expected definition or prototype within such a header file will yield several
advantages.

Direct benefits:

® The error detection is much faster since it will be detected during
compilation rather than in the link or subsequent phases.

® The position of the error will be identified more precisely.

® There will be no need to modify original source files.
Indirect benefits:

® The file 1s automatically included as the very first file in all original .c files.

® The file can contain much more powerful macro definitions than simple
-D options.

® The file i1s reusable for other projects developed under the same
environment.

Example

This is an example of a file that can be used with the —include option.

// The file may include (say) a standard include file implicitly
// included by the cross compiler
#include stdio.h

#include another_file.h

/! Generic definitions, reusable from one project to another
#define far
#define at(x)

/! A prototype may be positioned here to aid in the solution of
a link phase conflict between
// declaration and definition. This will allow detection of the

Setting Up a Target

// same error at compilation time instead of at link time.

// Leads to:

/] - earlier detection

/] - precise localisation of conflict at compilation time
void f(int);

// The same also applies to variables.

extern int x;

// Standard library stubs can be avoided,

// and 0S standard prototypes redefined.
#define _ polyspace_no_sscanf

#define _ polyspace_no_fgetc

void sscanf(int, char, char, char, char, char);
void fgetc(void);

4-21

4 Emulating Your Runtime Environment

4-22

Verifying an Application Without a “Main”

In this section...

“Main Generator Overview” on page 4-22
“Automatically Generating a Main” on page 4-23

“Manually Generating a Main” on page 4-23

Main Generator Overview

When your application is a function library (API) or a single module, you must
provide a main that calls each function because of the execution model used
by PolySpace. You can either manually provide a main, or have PolySpace
generate one for you automatically.

When you run a verification on PolySpace Client for C/C++ software, the main
is always generated. When you run a verification on PolySpace Server for
C/C++ software, you can choose automatically generate a main by selecting
the Generate a main (-main-generator) option.

PolySpace Client for C/C++ Software Default Behavior

The PolySpace Client for C/C++ product automatically checks whether the
code for verification contains a "main" or not.

e [f a main exists in the set of files, the verification proceeds with that main.

¢ [f a main does not exist, the tool generates a main. You can
specify the options: -main-generator-writes-variables and
-main-generator-calls.

PolySpace Server for C/C++ Software Default Behavior

By default, the PolySpace Server for C/C++ product stops verification if it
does not find a main. This behavior can help isolate files missing from the
verification.

However, you can specify that the PolySpace Server for C/C++ product
automatically generate a main. The tool then generates a main with

Verifying an Application Without a “Main”

the assumption of verifying a library. You can specify the options
-main-generator-writes-variables and -main-generator-calls.

Automatically Generating a Main

When you run a client verification, or a server verification using the Generate
a main (-main-generator) option, the software automatically generates
a main.

The generated main has three distinct default behaviors.

e [t first initializes any variables identified by the option
-main-generator-writes-variables. The default setting for this option
is public.

® It then calls a function which could be considered an initialization function
with the option -function-called-before-main.

e [t then calls any functions identified by the option -main-generator-calls.
The default setting for this option is -main-generator-calls unused.

For more information on the main generator, see “MAIN GENERATOR
OPTIONS (-main-generator) for PolySpace Software”.

Manually Generating a Main

Manually generating a main is often preferable to an automatically generated
main, because it allows you to provide a more accurate model of the calling
sequence to be generated.

There are three steps involved in manually defining the main.

1 Identify the API functions and extract their declaration.

2 Create a main containing declarations of a volatile variable for each type
that is mentioned in the function prototypes.

3 Create a loop with a volatile end condition.

4 Inside this loop, create a switch block with a volatile condition.

4-23

4 Emulating Your Runtime Environment

4-24

5 For each API function, create a case branch that calls the function using
the volatile variable parameters you created.

Consider the following example. Suppose that the API functions are:

int funci1(void *ptr, int Xx);
void func2(int x, int y);

You should create the following main:

void main()

{

volatile int random; /* We need an integer variable as a function
parameter */
volatile void * volatile ptr; /* We need a void pointer as a function
parameter */
while (random) {

switch (random) {

case 1:

random = funci(ptr, random); break; /* One API function call */

default:

func2(random, random); /* Another API function call */

}

}

Applying Data Ranges to External Variables and Stub Functions (DRS)

Applying Data Ranges to External Variables and Stub
Functions (DRS)

In this section...

“Overview of Data Range Specifications (DRS)” on page 4-25
“Specifying Data Ranges” on page 4-25

“File Format” on page 4-26

“Variable Scope” on page 4-28

“Performing Efficient Module Testing with DRS” on page 4-30

“Reducing Oranges with DRS” on page 4-31

Overview of Data Range Specifications (DRS)

By default, PolySpace verification assumes that all data inputs are set to their
full range. Therefore, nearly any operation on these inputs could produce an
overflow. The Data Range Specifications (DRS) module allows you to set
external constraints on global variables and stub function return values.
This can substantially reduce the number of orange checks in the verification
results.

Note You can only apply data ranges to variables with external linkages (see
“Variable Scope” on page 4-28) and stubbed functions.

Specifying Data Ranges
You activate the DRS feature using the option Variable range setup
(-data-range-specification).

To use the DRS feature:

1 Create a DRS file containing the list global variables (or functions) and
their associated data ranges, as described in “File Format” on page 4-26.

2 In the Analysis options section of the Launcher window, select PolySpace
inner settings > Stubbing.

4-25

4 Emulating Your Runtime Environment

4-26

3 In the Variable range setup parameter, select the DRS file that you
want to use.

File Format

The DRS file contains a list of global variables and associated data ranges.
The point during verification at which the range is applied to a variable is
controlled by the mode keyword: init, permanent, or globalassert.

The DRS file must have the following format:

variable name min_value max_value <init|permanent|globalassert>
function_name.return min_value max_value permanent

variable name val_min val_max <init|permanent|globalassert>

® variable _name — The name of the global variable.
® min_value — The minimum value for the variable.

® min_value and max_value — The minimum and maximum values for the
variable. You can use the keywords "min" and "max" to denote the minimum
and maximum values of the variable type. For example, for the type long,
min and max correspond to -2731 and 2731-1 respectively.

® init — The variable is assigned to the specified range only at initialization,
and keeps it until first write.

® permanent — The variable is permanently assigned to the specified range.
If the variable is assigned outside this range during the program, no
warning 1s provided. Use the globalassert mode if you need a warning.

® globalassert — After each assignment, an assert check is performed,
controlling the specified range. The assert check is also performed at global
initialization.

e function_name — The name of the stub function.

Tips

® You can use the keywords "min" and "max" to denote the minimum and

maximum values of the variable type. For example, for the type long, min
and max correspond to -2°31 and 2”31-1 respectively.

Applying Data Ranges to External Variables and Stub Functions (DRS)

® You can use hexadecimal values. For example, x 0x12 0x100 init.

e Supported column separators are tab, comma, space, or semi-column.
® To insert comments, use shell style “#”.

¢ Functions must be stubbed functions (no provided body).

® permanent is the only supported mode for functions.

¢ Function names may be C or C++ functions with blanks or commas. For
example, f(int, int).

® Function names can be specified in the short form (“f") as long as no
ambiguity exists.

e The function returns either an integral (including enum and bool) or
floating point type. If the function returns an integral type and you specify
the range as a floating point [v0.x, v1.y], the software applies the integral
interval [(int)v0-1, (int)v1+1].

Example

In the following example, the global variables are named x, y, z, w, array,
and v.

x 12 100 init # x is defined between [12;100] at \
initialisation

y 0 10000 permanent # y is permanently defined between \
[0,10000] even any possible assignment.

z 0 1 globalassert # z is checked in the range [0;1] after \
each assignment

w min max permanent # w is volatile and full range on its \
declaration type

v 0 max globalassert # v is positive and checked after each \
assignment.

arrayOfInt -10 20 init # All cells are defined between [-10;20] \
at initialisation

s1.id 0 max init # s1.id is defined between [0;2"31-1] at \
initialisation.

array.c2 min 1 init # All cells array[i].c2 are defined \
between [-2731;1] at initialisation

car.speed 0 350 permanent # Speed of Struct car is permanently \

defined between 0 and 350 Km/h

4-27

4 Emulating Your Runtime Environment

bar.return -100 100 permanent # function bar returns -100..100

Variable Scope

DRS supports variables with external linkages, const variables, and defined
variables. In addition, extern variables are supported with the option
-allow-undef-variables.

Static variables are not supported by DRS. The following table summarizes
possible uses:

init permanent globqlqsserf comments

Integer

Ok Ok Ok char, short, int,
enum, long and
long long

If you define

a range in
floating point
form, rounding is
applied.

Real

Ok Ok Ok float, double
and long double

If you define

a range in
floating point
form, rounding is
applied.

Volatile

No effect Ok Full range Only for int and
real

Structure field

Ok Ok Ok Only for int
and real fields,
including arrays
or structures of
int or real fields
(see below)

4-28

Applying Data Ranges to External Variables and Stub Functions (DRS)

init permanent globalassert comments

Structure field in | Ok No effect No effect Only when

array leaves are int or
real. Moreover
the syntax is
the following:
<array_name>.
<field_name>

Array Ok Ok Ok Only for int
and real
fields, including
structures or
arrays of integer
or real fields (see
below)

Pointer No effect No effect No effect

Union field No effect No effect No effect

Complete No effect No effect No effect

structure

Array cell No effect No effect No effect Example:
array|[0],
array[10] ...

Stubbed function | No effect Ok No effect Stubbed function

return returning

integral or
floating point

Note Every variable (or function) and associated data range will be written
in the log file at compilation time of a PolySpace verification. If PolySpace
software does not support the variable, a warning message is displayed.

4-29

4 Emulating Your Runtime Environment

4-30

Note DRS can initialize arrays of structures, structures of arrays, etc., as the
long as the last field i1s explicit (structures of arrays of integers, for example).

However, DRS cannot initialize a structure itself — you can only initialize the
fields. For example, "s.x 20 40 init" is valid, but "s 20 40 init" is not
(because PolySpace cannot determine what fields to initialize).

Performing Efficient Module Testing with DRS

DRS allows you to perform efficient static testing of modules. This is
accomplished by adding design level information missing in the source-code.

A module can be seen as a black box having the following characteristics:

® Input data are consumed

® Qutput data are produced

¢ Constant calibrations are used during black box execution influencing
intermediate results and output data.

Using the DRS feature, you can define:

® The nominal range for input data

® The expected range for output data

® The generic specified range for calibrations

These definitions then allow PolySpace software to perform a single static
verification that performs two simultaneous tasks:

® answering questions about robustness and reliability

¢ checking that the outputs are within the expected range, which is a result

of applying black-box tests to a module

In this context, you assign DRS keywords according to the type of data
(inputs, outputs, or calibrations).

Applying Data Ranges to External Variables and Stub Functions (DRS)

Type of Data | DRS Mode Effect on Results Why? Oranges | Selectivity
Inputs permanent Reduces the number | Input data that were | | 1
(entries) of oranges, (compared full range are set to a
with a standard smaller range.
PolySpace verification)
Outputs globalassert| Increases the number | More verification is i —
of oranges, (compared introduced into the
with a standard code, resulting in
PolySpace verification) | both more orange
checks and more
green checks.
Calibration init Increases the number | Data that were i l

of oranges, (compared
with a standard
PolySpace verification)

constant are set to
a wider range.

Reducing Oranges with DRS

When performing robustness (worst case) verification, data inputs are always
set to their full range. Therefore, every operation on these inputs, even a

simple “one_input + 10” can produce an overflow, as the range of one_input
varies between the min and the max of the type.

If you use DRS to restrict the range of “one-input” to the real functional
constraints found in its specification, design document, or models, you can
reduce the number of orange checks reported on the variable. For example, if
you specify that “one-input” can vary between 0 and 10, PolySpace software
will definitely know that:

® one_input + 100 will never overflow

¢ the results of this operation will always be between 100 and 110

4-31

4 Emulating Your Runtime Environment

4-32

This not only eliminates the local overflow orange, but also results in more
accuracy in the data. This accuracy is then propagated through the rest of
the code.

Using DRS removes the oranges located in the red circle below.

% of oranges

Oranges due fo
- complexity

Oranges due fo
variables sef fo
full range

Size (lines of code)

Why Is DRS Most Effective on Module Testing?

Removing oranges caused by full-range (worst-case) data can drastically
reduce the total number of orange checks, especially when used on
verifications of small files or modules. However, the number of orange checks
caused by code complexity is not effected by DRS. For more information on
oranges caused by code complexity, see “Considering the Effects of Application
Code Size” on page 7-43, and “Why Should there be an Optimum Size?” on
page 7-30.

This section describes how DRS reduces oranges on files or modules only.

Applying Data Ranges to External Variables and Stub Functions (DRS)

Example

The following example illustrates how DRS can reduce oranges. Suppose that
in the real world, the input “My_entry” can vary between 0 and 10.

PolySpace verification produces the following results: one with DRS and one

without.
Without DRS With DRS — 2 Oranges Removed + Return
Statement More Accurate
Bldrs.c
1 int My entey; 1 int My entryi
2 2
g int Punction (veid) 3 int Function{void)
4 q 4 |
g int x; 5 int x:
6 x = My entry + 100; 4 ® = My entry #1005
7 2= x + 1; ; : - = _
VL W pragma Inspection Point
2 #praqma“?.,__.. sction Peint X n SRR
return x; = J
10 }
e With “My_entry“ being full range, the e With “My_entry” being bounded to [0,10],
addition “+” is orange, the addition “+” is green
® the result “x” is equal to all values between | ® the result “x” is equal to [100,110]
in+1 . .
[earterI00 maer ® Due to previous computations, x+1 can NOT
® Due to previous computations, x+1 can here overflow here, making the addition “+” green
overflow too, making the addition “+’orange. again.

4-33

4 Emulating Your Runtime Environment

4-34

Without DRS

With DRS — 2 Oranges Removed + Return

Statement More Accurate

And the returned result is between
[min+101 max]

And the returned result is between
[101,111]

H drs. Function.IPT. & E] E| [')Z|

in "drs .. ling & column &
Source code

£33~ = " T =1 -4 A1 Pad
fpragma lnspection Po

ingpection point computed range:
[-2**31+101<=Function:/=2**31-1}

B drs.Function.PT.6 [|[B][X]

in "dr=.c" line 8 column 3
Source code
fpragma Inspection Point x
inspection point computed range:
{101<=Function:x<=111}

Preparing Source Code for
Verification

® “Stubbing” on page 5-2

® “Preparing Code for Variables” on page 5-11

e “Preparing Code for Built-in Functions” on page 5-19
® “Preparing Multitasking Code” on page 5-20

e “Verifying “Unsupported” Code” on page 5-37

5 Preparing Source Code for Verification

5-2

Stubbing

In this section...

“Stubbing Overview” on page 5-2

“Manual vs. Automatic Stubbing” on page 5-2

“The Stubbing Options PURE and WORST” on page 5-6

“The Default and Alternative Behavior for Stubbing” on page 5-6
“Function Pointer Cases” on page 5-8

“Stubbing Functions with a Variable Argument Number” on page 5-8

“Finding Bugs in _polyspace_stdstubs.c” on page 5-9

Stubbing Overview

A function stub is a small piece of code that emulates the behavior of a
missing function. Stubbing is useful because it allows you to verify code before
all functions have been developed.

Manual vs. Automatic Stubbing

The approach you take to stubbing can have a significant influence on the
speed and precision of your verification.

There are two types of stubs in PolySpace verification:

* Automatic stubs — When you attempt to verify code that calls an unknown
function, the software automatically creates a stub function based on the
function’s prototype (the function declaration). Automatic stubs generally
do not provide insight into the behavior of the function.

e Manual stubs — You create these stub functions to emulate the behavior of
the missing functions, and manually include them in the verification with
the rest of the source code.

By default, PolySpace software automatically stubs functions. However, in
some cases you may want to manually stub functions instead. For example,
when:

Stubbing

® Automatic stubbing does not provide an adequate representation of the
code it represents— both in regards to missing functions and assembly
instructions.

® The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

®* You want to improve the selectivity and speed of the verification.

® You want to gain precision by restricting return values generated by
automatic stubs.

® You need to deal with a function that writes to global variables.

For Example:

void main(void)
H

missing_function(&a, b);
1

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function was commented out,
then the division would be a green "/ ". A red "/ " could only be achieved
with a manual stub.

Deciding which Stub Functions to Provide

In the following section, procedure_to_stub can represent either procedure or
a sequence of assembly instructions which would be automatically stubbed
in the absence of a manual stub. (Please refer to “Ignoring Assembly Code”
on page 5-37).

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the

remainder of the system.

Consider procedure_to_stub, If it represents:

5-3

5 Preparing Source Code for Verification

5-4

* A timing constraint (such as a timer set/reset, a task activation, a delay,
or a counter of ticks between two precise locations in the code) then you
can stub it to an empty action (void procedure(void)). PolySpace needs
no concept of timing since it takes into account all possible scheduling
and interleaving of concurrent execution. There is therefore no need to
stub functions that set or reset a timer. Simply declare the variable
representing time as volatile.

® An I/O access: maybe to a hardware port, a sensor, a read/write of a file,
a read of an EEPROM, or a write to a volatile variable. There is no need
to stub a write access. If you wish to do so, simply stub a write access to
an empty action (void procedure(void)). Stub read accesses to "read all
possible values (volatile)".

* A write to a global variable. In this case, you may need to consider which
procedures or functions write to it and why. Do not stub the concerned
procedure_to_stub if:

= The variable is volatile;

= The variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically modelled as
though they have been started. Write a procedure_to_stub by hand if

= The variable is a regular variable read by other procedures or functions.

= A read from a global variable: If you want PolySpace to detect that it is a
shared variable, you need to stub a read access. This is easily achieved
by copying the value into a local variable.

In general, follow the Data Flow and remember that:

® PolySpace only cares about the C code which is provided;

® PolySpace need not be informed of timing constraints because all possible
sequencing is taken into account;

® You can refer to execution hypotheses made by PolySpace for a complete
list of constraints.

Example

The following example shows a header for a missing function (which might
occur, for example, if the code is a subset of a project.) The missing function

Stubbing

copies the value of the src parameter to dest so there would be a division by
zero - a runtime error - at run time.

void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b=11/ a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function was commented out,
then the division would be a green "/ ". A red "/ " could only be achieved
with a manual stub.

Default Stubbing Manual Stubbing Function ignored
void main(void) void a_missing_function void a_missing_function
{ (int *x, int y;) (int *x, int y;)
a=1; {*x=y;} {1}
b = 0;
a_missing_function(&a, void main(void) void main(void)
b); { {
b=17/3a; a=1; a=1;
// orange division b =0; b = 0;
} a_missing_function(&a, a_missing_function(&a,
b); b);
b=11/ a; b=11/1/ a;
// red division // green division

Due to the reliance on the software’s default stub, the assembly code is
ignored and the division " /" is green. The red division "/" could only be
achieved with a manual stub.

Summary

Stub manually: to gain precision by restricting return values generated by
automatic stubs; to deal with a function which writes to global variables.

5-5

5 Preparing Source Code for Verification

5-6

Stub automatically in the knowledge that no runtime error will be ever
introduced by automatic stubbing; to minimize preparation time.

The Stubbing Options PURE and WORST

External functions are assumed to have no effect (read, write) on global
variables. Every external function for which these assumptions are not valid
will need to be explicitly stubbed.

Stubbing has an effect on verification duration (“Reducing Verification Time”
on page 7-27) and precision.

Consider the example int f(char *);. In the verification of this function there
are three automatic stubbing approaches which may be considered, aside
from manual stubbing.

Using this | pragma pragma Default automatic
qpproqch POLYSPACE_WORST POLYSPACE_PURE sfubbing
implies the
assumption int f(char *x) int f(char *x) int f(char *x)
of this { { {
worst case strcpy(x, "the quick return strlen(x); *x = rand();
scenario in brown fox, etc."); } return O;
the stub return &(x[2]); }

}
and then If the function being modelled by the stub is not accurately represented by any of
there 1s these approaches to automatic stubbing, then manual stubbing will yield more
manual precise results.
stubbing
to consider.

The Default and Alternative Behavior for Stubbing

Initial Prototype

PolySpace default
automatic stubbing

With pragma
POLYSPACE_WORST

With pragma
POLYSPACE_PURE

void f1(void);

{do nothing]

Stubbing

Initial Prototype

With pragma
POLYSPACE_PURE

With pragma
POLYSPACE WORST

PolySpace default
automatic stubbing

Returns [-2731,

Returns [-2731,

Returns [-2731,

int f2 -] 2731-1] and assumes | 2/31-1]
(int u); the ability to write into
- (int *) u Assumes the ability to
int 3 write into *u to any
(int *u); depth and returns
[-2431, 2/31-1]
_ Returns an absolute | Returns AA or (int *) | Returns an absolute
int* T4 address (AA) u and assumes the address
(int u); ability to write into
(int *) u
_ Returns an absolute | Returns [-2731, Assumes the ability to
int* f5 address 2731-1] and assumes | write into *u, to any
(int *u); the ability to write into | depth and returns an
*u, to any depth absolute address
Does nothing The function pointed to by ptr will be called
void f6

(void (*ptr) (int)
param2)

void f7
(void (*ptr)(
param2)

with a full-range random value for the integer.
Rules for param2 are as above.

Unless the option —permissive-stubber, is used,
this function is not stubbed. The parameter
(int *) associated with the function pointer is
too complicated for PolySpace to stub it, and
PolySpace stops. You must stub this function

manually.

Note If (*ptr) contains a pointer as a
parameter, it won’t be stubbed automatically
and with —permissive-stubber , the function
pointer ptr is called with random as a

parameter.

5 Preparing Source Code for Verification

5-8

Function Pointer Cases

Function Prototype

Comments

int f(
void (*ptr_ok)(int, char, float),
other_typel other_paramil);

The -permissive-stubber option is not required.

int f(
void (*ptr_ok)(int *, char, float),
other_typel other_paramil);

The -permissive-stubber option is required
because of the “int *” parameter of the function
pointer passed as an argument

void _reg(int);
int _seq(void *);

unsigned char bar(void){
return 0;

}

void main(void){
unsigned char x=0;
_reg(_seq(bar));

}

3

Both functions “_reg” and “_seq” are
automatically stubbed, but the call to the “bar”
function is not exercised by the PolySpace
software.

The function that is a parameter is only called
in stubbed functions if the stubbed function
prototype contains a function pointer as
parameter.

Since here that is a “void *”, its not a function
pointer

Stubbing Functions with a Variable Argument

Number

PolySpace is capable of stubbing most vararg functions. Nevertheless,

¢ This can generate imprecision in pointer verification;

¢ [t causes a significant increase in complexity and hence in verification time.

There are two possible ways to deal with this.

¢ stub manually, or

Stubbing

¢ put a #pragma POLYSPACE_PURE "function_1" on every varargs function
that you know to be pure. This can reduce the complexity of pointer
verification tenfold.

Consider the following example.

Place this kind of line in any .c or .h file of the verification:

#ifdef POLYSPACE

#define example_of_function(format, args...)
#else

void example_of_function(char * format, ...)
#endif
void main(void)

{

int 1 = 3;

example_of_function("testl %d", i);

}

polyspace-c -D POLYSPACE

Finding Bugs in _polyspace_stdstubs.c

By doing a selective review of oranges, the user can sometimes find bugs
located in the _ polyspace__stdstubs.c file. As for other oranges in the code,
some are useless, others highlight real problems. How can we isolate the
useful ones?

There are a number of practical ways to make it easy for the user to detect
the useful oranges:

e (Create the file using approaches with are sympathetic to PolySpace needs.
This will yield up to 90% less useless oranges. For instance,
e Use functions that return random values instead of local volatile variables;

e Initialize char variables with a random char instead of a volatile int in
order to reduce the number of overflow checks;

® Define an "APPLY_CONSTRAINT()" macro. Such a function will always
create an orange check but it will be easy to filter.

5-9

5 Preparing Source Code for Verification

5-10

® By checking oranges manually in the _ polyspace__stdstubs.c file: many
comments have been added to explain where an orange is expected and why.

Collectively, these features turn the chore of separating out the useful orange
warnings into a fast and painless activity.

The user should start by reading IDP checks.

Example
The orange check in fgets() is one such check.

for (i=0; i < length; i++) /* write in s up to n-1 char */
s[i] = _polyspace_random_char();

IDP

This orange check is definitely a significant one. It means that PolySpace
could not conclude that the buffer which is given as an argument to fgets() is
always big enough to contain the specified character count. So, the severity
of the problem highlighted depends on how the function is called in the
application.

The check shouldn’t generally be orange unless it is highlighting a real
issue (unless fgets() is called very frequently. In that case, try using the
context-sensitivity or -inline options).

Preparing Code for Variables

Preparing Code for Variables

In this section...

“Assigning Ranges to Variables/Assert?” on page 5-11

“Checking Properties on Global Variables at Any Point: Global assert” on
page 5-12

“Modeling Variable Values External to my Application” on page 5-15
“How are Variables Initialized?” on page 5-16

“Verifying Code with Undefined or Undeclared Variables and Functions”
on page 5-17

Assigning Ranges to Variables/Assert?

Abstract

How can I use assert in PolySpace?

Explanation

Assert is a UNIX/linux/windows macro that aborts the program if the test
performed inside the assertion proves to be false.

Assert failures are real RTEs because they lead to a processor halt. Because
of this, PolySpace will produce checks for them. The behavior matches that
exhibited during execution, because all execution paths for unsatisfied
conditions are truncated (red and then gray). Thus it can be assumed
that any verification performed downstream of the assert uses value ranges
which satisfy the assert conditions.

Also refer to the use of volatile.

Solution

Assert can be used to constrain input variables to values within a particular
range, for example:

#include <stdlib.h>

5-11

5 Preparing Source Code for Verification

int return_betweens_bounds(int min, int max)

{
int ret; // ret is not initialized
ret = random(); // ret ~ [-2731, 2731-1]
assert ((min<=ret) && (ret<=max));
// assert is orange because the condition may or may not
// be fulfilled
// ret ~ [min, max] here because all execution paths that don't
// meet the condition are stopped
return ret;

}

Checking Properties on Global Variables at Any
Point: Global assert

The global assert mechanism works by inserting a check on each write access
to a global variable to ensure it is the range specified.

To use this feature:

1 Include the file "pst_gassert.h".

2 Create a list of Pst_Global Assert statements for the variables you are
interested in.

This header is located in <PolySpaceInstallDir>/cinclude

The Pst_Global Assert statement takes the form:
Pst_Global Assert(identifier, test);

Where identifier has to be a unique reference for each global assert statement,
and test 1s the logical test to perform on a variable. For example:

#include "pst_gassert.h"
int x;

Pst_Global_Assert(1,x>=0);
void main(void)

{

x=12; // green global assert check on the variable Xx

5-12

Preparing Code for Variables

x=0; // green global assert check on the variable x
x=-1; // red global assert check on the variable x

}

and associated results, using PolySpace Viewer:

E“’I.I_': !EE

1 finclude "pst gassert.h”

2

3 int x;

4

5 '_ = AESE ¢

&

-

g

a vold main (void)

10 (- = =
5 e =15
12 w =0} in "to.c" line 13 column 2

13 B = -19; |Source code :

14) == | x = =1%:

11 A

certain failure of ylobal assertion comdition [Pst_Global Assert 1] (variable 'x')

The behavior of a global assertion is as follows:

¢ It defines the properties of global variables;

® At each new write access to a variable which had been the subject of a
global assertion, PolySpace uses an extra check to indicate whether the
global assert is true or not.

You can create a header file with extern references to the global variables of
interest followed by the global assert statements.

Then, use the tools -include option to force inclusion of this file into every c
file. e.g. "polyspace.h":

#ifndef _POLYSPACE_H_

5-13

5 Preparing Source Code for Verification

5-14

#define _POLYSPACE_H_

#include "pst_gassert.h"

extern int x;

extern int vy;

Pst_Global Assert(1,x>=0);

Pst_Global Assert(2,((y>=0) && (y<100)));

#endif /* POLYSPACE_H */

The other activity you may want to do is to initialize the
variables at the start of execution to these values.

To do this you will need to create a hook into the applications
main that you are analyzing or use

the -data-range-specifications option.

Launching Command

polyspace-c -include "polyspace.h"

Variables Scope

Variables concern external linkage, const variables and not necessary a
defined variable (i.e. could be extern with option -allow-undef-variables).
Static variables are not concerned by this option.

The scalar type allows all modes: Variables of integral type signed or unsigned
allow any mode (char, short, int, long and long long). It allows also structure
fields and arrays cells (of integral type).

Pst_Global Assert(1, x > 0);

Pst_Global Assert(2, x < x1);

Pst_Global Assert(3, x1 > 0 && x1 < 128);
Pst_Global Assert(4, (s.b & 0x7f) == s.b);
Pst_Global Assert(5, tab[1]!= 0);

Limitations and Fatal Errors

The feature does not work for pointers, floats (float, double and long double)
and struct/union variable:

Preparing Code for Variables

extern int *p;

extern float f_var;

extern void changei(void);

Pst_Global Assert(6, *p < 300);

Pst_Global Assert(7, (changei(), 1 == 1));
Pst_Global Assert(8, ((x = x + 3) > 10));
Pst_Global Assert(9, x ++ < 100);
Pst_Global Assert(10, f_var < 10.0f);

Modeling Variable Values External to my Application

There are three main considerations.

e Usage of volatile variable;
* Express that the variable content can change at every new read access;
* Express that some variables are external to the application.

A volatile variable can be defined as a variable which does not respect
following axiom:

"if I write a value V in the variable X, and if I read X’s value before any other
writing to X occurs, I will get V."

Thus the value of a volatile variable is "unknown". It can be any value that
can be represented by a variable of its type, and that value can change at any
time - even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because
the value may have changed between one read access and the next.

Note Although the volatile characteristic of a variable is also commonly used
by programmers to avoid compiler optimization, this characteristic has no
consequence for PolySpace.

int return_random(void)

{
volatile int random; // random -~ [-2731, 2731-1], although
// random is not initialized

5-15

5 Preparing Source Code for Verification

int y;

y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]

random = 100;

y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]

return random; // random ~ [-2"31, 2731-1]

}

How are Variables Initialized?

Consider external, volatile and absolute address variable in the following
examples.

Extern

PolySpace works on the principle that a global or static extern variable could
take any value within the range of its type.

extern int x;

int y;

y =1/ x; // orange because x ~ [-2"31, 2731-1]

y =1/ x; // green because x ~ [-2731 -1] U [1, 2"31-1]

Refer to “Before You Review PolySpace Results” on page 8-2 for more
information on color propagation.

For extern structures containing fields of type “pointer to function”, this
principle leads to red errors in the viewer. In this case, the resulting default
behavior is that these pointers don’t point to any valid function. For results to
be meaningful here, you may well need to define these variables explicitly.

Volatile

volatile int x; // x ~ [-2"31, 2731-1], although x has not been
initialised

¢ if x is a global variable, the NIV is green

e if x is a local variable, the NIV is always orange

5-16

Preparing Code for Variables

Absolute Addressing

The content of an absolute address is always considered to be potentially
uninitialized (NIV orange):
e #define X (* ((int *)0x20000))
= X = 100;
=y =1/ X; // NIV on X is orange
e int *p = (int *)0x20000;
= *p = 100;
=y =1/ *p ;//NIVon *pis orange

Verifying Code with Undefined or Undeclared
Variables and Functions

The definition and declaration of a variable are two different but related
operations that are frequently confused.
Definition

¢ for a function: the body of the function has been written: int f(void)
{ return 0; }

¢ for a variable: a part of memory has been reserved for the variable: int
X; or extern int x=0;

When a variable is not defined, you must specify the option Continue
even with undefined global variables (-allow-undef-variable) before
you start a verification. When you specify this option, PolySpace software
considers the variable to be initialized, and to potentially have any value in
its full range (see “How are Variables Initialized?” on page 5-16).

When a function is not defined, it is stubbed automatically.

Declaration

¢ for a function: the prototype: int f(void);

5-17

5 Preparing Source Code for Verification

¢ for an external variable: extern int x;

A declaration provides information about the type of the function or variable.
If the function or variable is used in a file where it has not been declared, a

compilation error will result.

5-18

Preparing Code for Built-in Functions

Preparing Code for Built-in Functions

PolySpace stubs all functions that are not defined within the verification.
Polyspace provides an accurate stub for all the functions defined in the
standard libc, taking into account functional aspect of the function.

All these functions are declared in the standard list of headers, and can be
redefined using their own definitions by invalidating the associated set of
functions:

e Using D POLYSPACE_NO_STANDARD_STUBS for all functions declared in
Standard ANSI headers: assert.h, ctype.h, errno.h, locale.h, math.h,
setjmp.h Csetjmp’ and ’longjmp’ functions are partially implemented
— see <polyspace>/cinclude/_polyspace_ _stdstubs.c), signal.h
(‘signal' and 'raise' functions are partially implemented — see
<polyspace>/cinclude/__polyspace__stdstubs.c), stdio.h, stdarg.h,
stdlib.h, string.h,and time.h.

e Using D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions only
declared in strings.h, unistd.h, and fcntl.h.

Generally, these functions can be redefined and analyzed by PolySpace by
invalidating the associated set of functions or only the specific function using
D _ polyspace_no_<function name>. For example, If you want to redefine
the fabs () function, you need to add the D _ polyspace no_fabs directive
and add the code of your own fabs () function in a PolySpace verification.

There are five exceptions to these rules The following functions which deal

with memory allocation can not be redefined: malloc(), calloc(), realloc(),
valloc(), alloca(), built in malloc() and _built in_alloca().

5-19

5 Preparing Source Code for Verification

5-20

Preparing Multitasking Code

In this section...

“PolySpace Software Assumptions” on page 5-20
“Modelling Synchronous Tasks” on page 5-21

“Modelling Interruptions and Asynchronous Events/Tasks/Threads” on
page 5-23

“Are Interruptions Maskable or Preemptive by Default?” on page 5-25
“Shared Variables” on page 5-27

“Mailboxes” on page 5-31

“Atomicity (Can an Instruction be Interrupted by Another)” on page 5-34

“Priorities” on page 5-35

PolySpace Software Assumptions

This section describes the default behavior of the PolySpace software. If
your code does not conform to these assumptions, you must make minor
modifications to the code before starting verification.

The assumptions are as follows:

¢ The main procedure must terminate in order for entry-points (or tasks)
to start.

e All tasks or entry-points start after the end of the main without any
predefined basis regarding: the sequence, priority or preemption. If an

entry-point is seen as dead code, it is because the main contains a red error

and therefore does not terminate.
e PolySpace considers that there is no atomicity, nor timing constraints.

¢ Only entry points with void any name (void) as prototype will be
considered.

The MathWorks recommends that you read this entire section before applying
the rules described below. Some rules are mandatory, and others allow you to

gain selectivity.

Preparing Multitasking Code

Modelling Synchronous Tasks

In some circumstances, you must adapt your source code to allow synchronous
tasks to be taken into account.

Suppose that an application has the following behavior:

® Once every 10 ms: void tsk_10ms(void);
® Once every 30 ms: ...

® Once every 50 ms

These tasks never interrupt each other. They include no infinite loops, and
always return control to the calling context. For example:

void tsk_10ms(void)
{ do_things_and_exit();
/* it's important it returns control*/

}

However, if you specify each entry-point at launch using the option:
polyspace-c -entry-points tsk_10ms,tsk_30ms,tsk_50ms

then the results are NOT valid, because each task is only called once.

To address this problem, you must specify that the tasks are purely sequential
— that is, that they are functions to be called in a deterministic order. You
can do this by writing a function to call each of the tasks in the correct
sequence, and then declaring this new function as a single task entry point.
Solution 1

Write a function that calls the cyclic tasks in the right order: this is an exact
sequencer. This sequencer is then specified at launch time as a single task

entry point.

This solution:

5-21

5 Preparing Source Code for Verification

® is very precise;

® requires knowledge of the exact sequence of events.

For example, the sequencer might be:

void one_sequential C_function(void)
{

while (1) {

tsk_10ms ()

tsk_10ms ()

tsk_10ms ()

(

)

)

(

bl

bl

)

bl

tsk_30ms
tsk_10ms (
tsk_10ms (
tsk_50ms
}
}

)

and the associated launching command:
polyspace-c -entry-points one_sequential_ C_function
Solution 2

Make an upper approximation sequencer, taking into account every
possible scheduling.

This solution:

® is less precise;

® is quick to code, especially for complicated scheduling

For example, the sequencer might be:

void upper_approx_C_sequencer(void)
{
volatile int random;
while (1) {
if (random) tsk_10ms();
if (random) tsk_30ms();

5-22

Preparing Multitasking Code

if (random) tsk _50ms();
if (random) tsk_100ms();

and the associated launching command:

polyspace-c -entry-points upper_approx_C_sequencer

Note If this is the only entry-point, then it can be added at the end of the
main rather than specified as a task entry point.

Modelling Interruptions and Asynchronous
Events/Tasks/Threads

You can adapt your source code to allow PolySpace software to consider both
asynchronous tasks and interruptions. For example:

void interrupt isr_1(void)

{ ...}

Without such an adaptation, interrupt service routines will appear as gray
(dead code) in the Viewer. The gray code indicates that this code is not
executed and is not taken into account, and so all interruptions and tasks are
ignored by PolySpace.

The standard execution model is such that the main is executed initially.
Only if the main terminates and returns control (i.e. if it is not an infinite loop
and has no red errors) will the entry points be started, with all potential
starting sequences being modelled automatically. There are several different
approaches which may be adopted to implement the required adaptations.
Solution 1: Where interrupts (ISRs) CANNOT preempt each other

If these 3 following conditions are fulfilled:

® the interrupt functions it_1 and it_2 (say) can never interrupt each other;

5-23

5 Preparing Source Code for Verification

® cach interrupt can be raised several times, at any time;

® they are returning functions, and not infinite loops.

Then these non preemptive interruptions may be grouped into a single
function, and that function declared as a entry point.

void it _1(void);
void it 2(void);

void all_interruptions_and_events(void)
{ while (1) {
if (random()) it _1();
if (random()) it _2();
ce)
}

The associated launching command would be:

polyspace-c -entry-points all_interruptions_and_events
Solution 2: Where interrupts CAN pre-empt each other
If two ISRs can be each be interrupted by the other, then:

® encapsulate each of them in a loop

® declare each loop as a entry point.

One way of approaching that is to replace the original file with a PolySpace
version, as illustrated below.

original_file.c
void it_1(void)

{
return;
}
void it_2(void)
{
return;
}

5-24

Preparing Multitasking Code

void one_task(void)

{

return;

}

polyspace.c
void polys_ it 1(void)
{

while (1)

if (random())

it 1();

}

void polys it 2(void)
{
while (1)
if (random())
it 2();
}

void polys _one_task(void)
{
while (1)
if (random())
one_task();

}

The associated launching command would be

polyspace-c -entry-points polys_it 1,polys_it_2,polys_one_task

Are Interruptions Maskable or Preemptive by
Default?

For user interruptions, no implicit critical section is defined: they all need
to be written by hand.

5-25

5 Preparing Source Code for Verification

Sometimes, an application which includes interrupts has a critical section
written into its main entry point, but shared data is still flagged as
unprotected.

This occurs because PolySpace does not distinguish between interrupt service
routines and tasks. If you specify an interrupt to be a "-entry-point" entry
point, it will have the same priority level as the other procedures declared

as tasks ("-entry-points" option). So, because PolySpace makes an upper
approximation of all scheduling and all interleaving, in this case that
includes the possibility that the ISR might be interrupted by any
other task. There are more paths modelled than could happen during
execution, but this has no adverse effect on of the results obtained except that
more scenarios are considered than could happen during “real life” execution -
and the shared data is not seen as being protected.

To address this, the interrupt needs to be embedded in a specific procedure
that uses the same critical section as the one used in the main task. Then,
each time this function is called, the task will enter a critical section which
will model the behavior of a nonmaskable interruption.

Original files

void my_main_task(void)
{

MASK_IT;

shared_x = 12;
UMASK_IT;

}

int shared_x ;
void interrupt my_real_it(void)
{ /* which is by specification unmaskable */

shared_x = 100;
}

Additional C files required by PolySpace:

#define MASK_IT pst_mask_it()

5-26

Preparing Multitasking Code

#define UMASK_IT pst_umask_it()
void other_task (void)

{
MASK_IT;
my_real_it();
UMASK_IT;

}

The associated launch command:

polyspace-c \
-D interrupt= \
-entry-points my_main_task,other_task \
-critical-section-begin "pst _mask_it:table" \
-critical-section-end "pst_unmask_it:table"

Shared Variables

When PolySpace is launched without any options, all tasks are examined
as though concurrent and with no assumptions about priorities, sequence
order, or timing. Shared variables in this context will always be considered
unprotected, and so will all be shown as orange in the variable dictionary.

The following explicit protection mechanisms can be used to protect the
variables:

e critical section

® mutual exclusion
See details below:

o “Differences Between Dictionary and Concurrent Access Graph” on page
5-28
e “Critical Sections” on page 5-29

e “Mutual Exclusion” on page 5-30

® “Semaphores” on page 5-31

5-27

5 Preparing Source Code for Verification

5-28

Differences Between Dictionary and Concurrent Access Graph

This section explains how the dictionary works, and how it differs to the
concurrent access graph.

Consider the following code, which contains 3 tasks

int *ptr; void taski(void) void task2(void) void task3(void)
int a; {a { {

int b; ++; a=a+ 10; ptr = &b;

void main(void) } *ptr = 0;

{ }

ptr = &a;

}

The variable “ptr” is a simple pointer. ptr itself is not a shared variable
because it 1s only accessed by the main and task3. We can confirm this
diagnostic by checking the dictionary which lists

®* Writes accesses in the main and in task3

® Read access in task3

But it appears as shared in the dictionary because the concurrent access
graph also gathers information regarding the variable “a”, which it points to.
This highlights the difference between the dictionary and the concurrent
access graph for pointer variables - the concurrent access graph includes both
e Read/write accesses to the pointer itself (ptr in the example below), and

® Read/write accesses to the variable pointed to (a in the example)

Preparing Multitasking Code

® Concurrent a... [= |[D]X]

3 Variables

sourel.c =} New_Project =
3 +
sourel.c w-sourel b
taskz .
e - e
S
i i “pitten by 4 4 souret _init_globals
ke Fead by ¥ 4 sourel.main
sourel.c | |
taskl 'azﬁ\ﬁ'? Mwithan by task 1| 1 sourel task3
A _
L (Rasd by task 3
aourel.c e i i ¥ sourel taskd
£l ptr rasantialiy kiden by s 4|| soure task2
tel sl Bowd Loy 4| soure task3
task3
4|| soure taskl
|k soure task2
¥ souret task3 gl

||k sourel taskl
=l

K] — L]

Critical Sections
This is the most common protection mechanism found in applications, and
is simple to represent in PolySpace:

¢ if one entry-point makes a call to a particular critical section, all other
entry-points will be blocked on the "critical-section-begin" function call
until the originating entry-point calls the "critical-section-end" function,

® this does not mean the code between two critical sections is atomic;

® it is a binary semaphore, so there is only one token per label (CS1 in the
example below). Unlike many implementations of semaphores, it is not
a decrementing counter that can keep track of a number of attempted
accesses.

Consider the following example.

Original Code

void proci(void)

{

5-29

5 Preparing Source Code for Verification

5-30

MASK_IT;

x =12; // X 1is protected
y = 100;

UMASK_IT;

}
void proc2(void)

{

MASK_IT;

x =11; // X is protected
UMASK_IT;

y = 101; // Y is not protected

}

File Replacing the Original Include File

void begin_cs(void);

void end_cs(void);

#define MASK_IT begin_cs()
#define UMASK_IT end_cs()

Command line to launch PolySpace

polyspace-c \
-entry-point proci,proc2 \
-critical-section-begin"begin_cs:label_1" \
-critical-section-end"end_cs:label_1"

Mutual Exclusion

Mutual exclusion between tasks or interrupts can be implemented while
preparing PolySpace for launching.

Suppose there are entry-points which never overlap each other, and that
variables are shared by nature.

If entry-points are mutually exclusive, i.e. if they do not overlap in time,
you may want PolySpace to take that into account. Consider the following

example.

These entry points cannot overlap:

Preparing Multitasking Code

® t1 and t3
® t2, t3 and t4

These entry-points can overlap:

e t]1 and t2
e t] and t4

Before launching verification, the names of mutually exclusive entry-points
are placed on a single line

polyspace-c -temporal-exclusion-file myExclusions.txt
-entry-points t1,t2,t3,t4

The file myExclusions.txt is also required in the current directory. This will
contain:

t1 t3
t2 t3 t4

Semaphores

Although it is possible to implement in ¢, it is not possible to take into account
a semaphore system call in PolySpace. Nevertheless, Critical sections may be
used to model the behavior.

Mailboxes

Suppose that an application has several tasks, some of which post messages
in a mailbox while others read them asynchronously.

This communication mechanism is possible because the OS libraries provide
send and receive procedures. It is likely that the source files will be
unavailable because the procedures are part of the OS libraries, but the
mechanism needs to be modelled if the verification is to be meaningful.

By default, PolySpace will automatically stub the missing OS send and
receive procedures. Such a stub will exhibit the following behavior:

5-31

5 Preparing Source Code for Verification

¢ for send (char *buffer, int length), the content of the buffer will be written
only when the procedure is called,

e for receive (char *buffer, int *length), each element of the buffer will
contain the full range of values appropriate to that data type.

This and other mechanisms are available, with different levels of precision.

Let PolySpace stub ® quick and easy to code;

automaticall . . .
y * imprecise because there is no

direct connection between a
mailbox sender and receiver. That
means that even if the sender is
only submitting data within a
small range, the full data range
appropriate for the type(s) will be
for the receiver data.

Provide a real mailbox mechanism e can be very costly (time
consuming) to implement;

® can introduce errors in the stubs;

® provides little additional benefit
when compared to the upper
approximation solution

Provide an upper approximation This models the mechanism such
of the mailbox that new read from the mailbox
reads one of the recently posted
messages, but not necessarily the
last one.
® quick and easy to code;

® gives precise results;

Consider the following detailed implementation of the upper approximation
solution.

polyspace_mailboxes.h

5-32

Preparing Multitasking Code

typedef struct _r {

int length;

char content[100];

} MESSAGE;
extern MESSAGE mailbox;
void send(MESSAGE * msg);
void receive (MESSAGE *msg);

polyspace_mailboxes.c

#include "polyspace.h"
MESSAGE mailbox;
void send(MESSAGE * msg)

{

volatile int test;

if (test) mailbox = *msg;

// a potential write to the mailbox

}
void receive (MESSAGE *msg)
{
*msg = mailbox;
}

Original code

#include "polyspace_mailboxes.h"
void t1(void)

{

MESSAGE msg_to_send;

int 1i;

for (i=0; i<100; i++)

msg_to_send.content[i] = i;
msg.length = 100;

send (&msg) ;

}
void t2(void)

{

MESSAGE msg_to_read;

receive (&msg_to_read);

}

5-33

5 Preparing Source Code for Verification

5-34

PolySpace then proceeds on the assumption that each new read from the
mailbox reads a message, but not necessarily the last one.

The associated launching command is

polyspace-c -entry-points t1,t2

Atomicity (Can an Instruction be Interrupted by
Another)

Atomic: In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible

Atomicity: In a transaction involving two or more discrete pieces of
information, either all of the pieces are committed or none are.

Instructional decomposition

In general terms, PolySpace does not take into account either CPU instruction
decomposition or timing considerations.

It is assumed by PolySpace that instructions are never atomic except

in the case of read and write instructions. PolySpace makes an upper
approximation of all scheduling and all interleaving. There are more
paths modelled than could happen during execution, but given that all
possible paths are always analyzed, this has no adverse effect on of the
results obtained.

Consider a 16 bit target that can manipulate a 32 bit type (an int, for example).
In this case, the CPU needs at least two cycles to write to an integer.

Suppose that x is an integer in a multitasking system, with an initial value
of 0x0000. Now suppose 0xFF55 is written it. If the operation was not
atomic it could be interrupted by another instruction in the middle of the
write operation.

e Task 1: Writes OxFF55 to x.

e Task 2: Interrupts task 1. Depending on the timing, the value of x could be
any of 0xFF00, 0x0055 or OxFF55.

Preparing Multitasking Code

PolySpace considers write/read instructions atomic, so task 2 can only read
0xFF55, even if X is not protected (refer to “Shared Variables” on page 5-27).

Critical sections

In terms of critical sections, PolySpace does not model the concept of
atomicity. A critical section only guarantees that once the function associated
with -critical-section-begin has been called, any other function making use of
the same label will be blocked. All other functions can still continue to run,
even if somewhere else in another task a critical section has been started.

PolySpace’s verification of Runtime Errors (RTEs) supposes that there was no
conflict when writing the shared variables. Hence, even if a shared variable is
not protected, the RTE verification is complete and correct.

More information is available in “Critical Sections” on page 5-29.

Priorities

Priorities are not taken into account by PolySpace as such. However,

the timing implications of software execution are not relevant to the
verification performed by PolySpace, which is usually the primary reason for
implementing software task prioritization. In addition, priority inversion
issues can mean that it would be dangerous to assume that priorities

can protect shared variables. For that reason, PolySpace makes no such
assumption.

In practice, while there is no facility to specify differing task priorities, all
priorities are taken into account because the default behavior of the software
assumes that:

e all task entry points (as defined with the option -entry-points) start
potentially at the same time;

® they can interrupt each other in any order, no matter the sequence of
instructions - and so all possible interruptions will be accounted for, in
addition to some which can never occur in practice.

If you have two tasks t1 and t2 in which t1 has higher priority than t2, simply
use polyspace-c -entry-points t1,t2 in the usual way.

5-35

5 Preparing Source Code for Verification

e t1 will be able to interrupt t2 at any stage of t2, which models the behavior
at execution time;

e t2 will be able to interrupt t1 at any stage of t1, which models a behavior
which (ignoring priority inversion) would never take place during execution.
PolySpace has made an upper approximation of all scheduling and all
interleaving. There are more paths modelled than could happen during
execution, but this has no adverse effect on of the results obtained.

5-36

Verifying “Unsupported” Code

Verifying “Unsupported” Code

In this section...

“Ignoring Assembly Code” on page 5-37
“Dealing with Backward “goto” Statements” on page 5-43
“Types Promotion” on page 5-46

Ignoring Assembly Code

You can ignore assembly code during verification using the Discard
assembly code option (-discard-asm). Using this option can deal with
many instances of assembly code within a C application, but it is not always
a valid route to take.

Ignored assembly instructions will change the behavior of the code. For
example, a write access to a shared variable can be written in assembly code.
If this write access is ignored, the verification may produce inaccurate results.

In such cases, please refer to “Stubbing” on page 5-2, which applies to
functions as well as to stubbed instructions.

PolySpace is designed for C code only. In most cases, the option -discard-asm
combined with -asm-begin and -asm-end can be used to instruct PolySpace
to discard a number of assembly code constructs:

e “Example: Ignore All Statements, the Rest of the Function Remains
Unchanged” on page 5-38

e “Example: Automatic Stubbing” on page 5-40

¢ “Examples: Empty Body” on page 5-41

e “Example: #asm and #endasm Support” on page 5-42

e “Example: What to Do If -discard-asm Fails to Parse an asm Code Section”
on page 5-42

5-37

5 Preparing Source Code for Verification

5-38

Example: Ignore All Statements, the Rest of the Function
Remains Unchanged

Discarding assembly code by using the -discard-asm is an acceptable
approach where ignoring the assembly instructions will have no impact on
the remainder of the function.

Also refer to the “Manual versus automatic stubbing”

int f(void)
{

asm ("% reg val; mtmsr val;");
asm("\tmove.w #$2700,sr");
asm("\ttrap #7");

asm(" stw r11,0(r3) ");

assert (1); // is green

return 1;

}

int other_ignored6(void)

{

#define A _MACRO(bus_controller_mode) \
asm__ volatile("nop"); \

__asm__ volatile("nop"), \
__asm__ volatile("nop"); \
__asm__ volatile("nop"); \

asm__ volatile("nop"); \

)5
asm volatile("nop")
assert (1); // is green

A_MACRO(x) ;
assert (1); // is green
return 1;
}
int pragma_ignored(void)
{
#pragma asm

SRST
#pragma endasm
assert (1); // is green

}

Verifying “Unsupported” Code

int other_ignored2(void)
{

asm "% reg val; mtmsr val;";

asm mtmsr val;

assert (1); // is green

asm ("px = pm(0,%2); \
0 = px1; \
1 px2;"

"=d" (data_16), "=d" (data_32)
"y" ((UI_32 pm *)ram_address):
"px");

assert (1); // is green

}

o°

= o°

int other_ignored1(void)
{
__asm
{MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8
MOV R8,R8}
assert (1); // is green

}

int GNUC_include (void)

{

extern int _ P (char *__ pattern, int _ flags,
int (*__errfunc) (char *, int),

unsigned *_ pglob) _ asm__ ("glob64");
_asm__ ("rorw $8, %w0" \

II=r\II (_V) \

"0" ((guint16) (val)));
_asm__ ("st g14,%0" : '=m" (*(AP)));
_asm(llll \

"=p" (__t.c) \

"0" ((((union { int i, j; } *) (AP))++)->i));
assert (1); // is green
return (int) 3 __asm__ ("% reg val");

5-39

5 Preparing Source Code for Verification

}

int other_ignored3(void)
{
__asm {ldab Oxffff,0;trapdis;};
__asm {ldab Oxffff,1;trapdis;};
assert (1); // is green
asm__ ("% reg val");
_asm__ ("mtmsr val");
assert (1); // is green

return 2;
}
int other_ignored4(void)
{
asm {
port_in: /* byte = port_in(port); */
mov EAX, O
mov EDX, 4[ESP]
in AL, DX
ret

port_out: /* port_out(byte,port);
mov EDX, 8[ESP]
mov EAX, 4[ESP]
out DX, AL
ret }
assert (1); // is green

}

Example: Automatic Stubbing
You must use the -discard-asm option.

PolySpace detects that no body is defined, and automatically creates a stub.

asm int m(int tt);

Also refer to the “Manual versus Automatic stubbing” section

5-40

Verifying “Unsupported” Code

Examples: Empty Body

You must use the -discard-asm option.
#pragma inline_asm(ex1, ex2)

#pragma inline_asm(ex1, ex2)
int ex1(void)

{

% reg val;

mtmsr val;

return 3;

}s
int ex2(void)
{

% reg val;

mtmsr val;

assert (1); // is dead code because the whole body is empty
return 3;

b
#pragma inline_asm(ex3)

#pragma inline_asm(ex3)
int ex3(void)

{

% reg val;

mtmsr val;

return 3;

b
Compiler specific implementation: an empty body is provided

asm int 1(int tt){}

Compiler specific implementation: all statements in the function body are
ignored.

asm
int h(int tt)
{

[

% reg val; // is ignored

5-41

5 Preparing Source Code for Verification

5-42

mtmsr val; // is ignored
return 3; // is ignored

}s
Also refer to “Stubbing” on page 5-2.

Example: #asm and #endasm Support

Using #asm and #endasm allows fragments of (typically) assembly code to
be disregarded by PolySpace, regardless of whether or not you use the
-discard-asm.

Consider the following example.

void test(void)

{
#asm
mov _as:pe, reg
jre _nop
#endasm
int r;
r=0;
r++;
}
Explanation

By default, the usage of #asm and #endasm requires the usage of the
-asm-begin and -asm-end options in the following way. The syntax to use this
facility when launching PolySpace in batch mode is:

polyspace-c -asm-begin asm -asm-end endasm

Example: What to Do If -discard-asm Fails to Parse an asm
Code Section
Occasionally, the -discard-asm option does not deal with a particular

assembly code construction, particularly when the code fragment is compiler
specific

Verifying “Unsupported” Code

Note You could also consider using the -asm-begin and -asm-end options
instead of the following approach).

Consider this example.

1 int x=12;

2

3 void f(void)

4 {

5 #pragma will_be_ignored

6 x =0;

7 x= 1/X; // no colour is even displayed
8 // not even C code

9 #pragma was_ignored

10 Xx++;

11 x=15;

12 }

13

14 void main (void)

15 {

16 int y;

17 £0);

18 y =1/x+ 1/ (x-15); // x 1is equal to 15
19

20 }

As shown in this example, any text or code placed between the two #pragma
statements is ignored by the verification. This allows any unsupported
construction to be ignored without changing the meaning of the original
code. The options to enable this feature are accessible through the Graphical
Interface PolySpace Launcher or in batch mode:

polyspace-c -asm-begin will be_ignored -asm-end was_ignored

Dealing with Backward “goto” Statements

PolySpace 1s not designed to support backward “goto” statements. However,
macros provide a solution in most cases. In general, verifications that includes

5-43

5 Preparing Source Code for Verification

backward “goto” statements stop at an early stage, and a message appears
saying that backward “goto” statements are not supported.

Macros provided with the PolySpace software can work around this limitation
as long as the “goto” labels and jump instructions are in the same
code block (and in the same scope).

To insert these macros into the code:

1 Edit the C file containing the “goto” statements;

2 Add #include pstgoto.h" at the beginning of the file (located in
<PolySpacelnstallDir>/cinclude).

3 Go to the beginning of the block containing the “goto” statements.

4 Insert the USE_1_GOTO(<tag>) macro call after the variable declarations
(local to the block).

5 Insert the EXIT_1_GOTO(<tag>) macro call before the end of this same
block (take care with the closing bracket "}").

6 Replace "goto <tag>" with "GOTO(<tag>)".

For example, the following code would cause a verification to
terminate:

{

/* local variable declarations */
int x;

/* Instructions */

label1l:

goto labeltl

}

You could address this problem as follows:

/* the pstgoto.h file is provided by PolySpace and its path */

5-44

Verifying “Unsupported” Code

{
/* local variable declarations */
int x;

USE_1_GOTO(labell);
/* Instructions */

label1l:
GOTO(labelt);

EXIT_1_GOTO(labeld);
}

The code block may contain many instances of backward “goto” statements.
Using matching USE_n_GOTO() and EXIT_n_GOTO() statements will address
this (for example, USE_2_ GOTO(), USE_3 GOTO(), etc.)

Note You must copy pstgoto.h from <PolySpaceInstallDir>/cinclude,
and add it to the list of include directories (-I).

The code block may also use several different tags. You can use multiple “tag”
parameters to address these situations. For example, use:

USE_n_GOTO (<tag 1>, <tag 2>, ..., <tag n>);
EXIT_n_GOTO(<tag 1>, <tag 2>, ..., <tag n>);

Consider the following example:

5-45

5 Preparing Source Code for Verification

5-46

Original Code

Modified Code for Verification

{

Reset:

{
if (X)
goto Reset;

}

{
if (Y)
goto Reset;
}
}

{
USE_1_GOTO(Reset) ;

Reset:

{
if (X)
GOTO(Reset);

{
if (Y)
GOTO(Reset);
}

}
EXIT_1_GOTO(Reset);

Types Promotion

¢ “Unsigned Integers Promoted to Signed Integers” on page 5-46

¢ “What are the Promotions Rules in Operators?” on page 5-47

e “Example” on page 5-48

Unsigned Integers Promoted to Signed Integers
It is important to understand the circumstances under which signed integers

are promoted to unsigned.

For example, the execution of the following code would produce an assertion

failure and a core dump.

#include <assert.h>

int main(void) {
int x = -2;

Verifying “Unsupported” Code

unsigned int y = 5;
assert(x <=y);

}

Consider the range of possible values (interval) of x in this second example.
Again, this code would cause assertion failure:

volatile int random;

unsigned int y = 7;

int x = random;

assert (x >= -7 && x <=y);

However, given that the interval range of x after the second assertion is not [
-7 .. 71, but rather [0 .. 7], the following assertion would hold true.

assert (x>=0 && x<=7);
Implicit promotion explains this behavior.

In fact, in the second example x <=y is implicitly:
((unsigned int) x) <=y /* implicit promotion since y is unsigned */

A negative cast into unsigned gives a big value, which has to be bigger that 7.
This big value can never be <= 7, and so the assertion can never hold true.

What are the Promotions Rules in Operators?
Knowledge of the rules applying to the standard operators of the C language

will help you to analyze those orange and red checks which relate to overflows
on type operations. Those rules are:

¢ Unary operators operate on the type of the operand,;

e Shifts operate on the type of the left operand;

® Boolean operators operate on Booleans;

¢ Other binary operators operate on a common type. If the types of the 2
operands are different, they are promoted to the first common type which
can represent both of them.

So:

5-47

5 Preparing Source Code for Verification

5-48

® Be careful of constant types.

® Be careful when verifying any operation between variables of different
types without an explicit cast.

Example

Consider the integral promotion aspect of the ANSI-C standard (see 6.2.1 in
ISO/IEC 9899:1990). On arithmetic operators like +, -, ¥, % and / , an integral
promotion is applied on both operands. From the PolySpace viewpoint, that
can imply an OVFL or a UNFL orange check.

extern char random_char(void);
extern int random_int(void);

{

char ci random_char();
char c2 random_char();
9 int i1 = random_int();
10 int i2 = random_int();
11
12 i1 = i1 + i2; // A typical OVFL/UNFL on a + operator
183 ¢1 =c1 + c2; // An OVFL/UNFL warning on the c1 assignment
[from int32 to int8]
14 }

2
3
4
5 void main(void)
6
7
8

Unlike the addition of two integers at line 12, an implicit promotion is used in
the addition of the two chars at line 13. Consider this second “equivalence”
example.

extern char random_char(void);

void main(void)

2

3

4

5 {

6 char ct
7

8

9

random_char();
random_char();

char c2

c1 = (char)((int)c1 + (int)c2); // Warning UOVFL: due to
integral promotion
10 }

Verifying “Unsupported” Code

An orange check represents a warning of a potential overflow (OVFL),
generated on the (char) cast [from int32 to int8]. A green check represents
a verification that there is no possibility of any overflow (OVFL) on the
+operator.

In general, integral promotion requires that the abstract machine should
promote the type of each variable to the integral target size before realizing
the arithmetic operation and subsequently adjusting the assignment type.
See the equivalence example of a simple addition of two char(above).

Integral promotion respects the size hierarchy of basic types:

® char (signed or not) and signed short are promoted to int.

® unsigned short is promoted to int only if int can represent all the possible
values of an unsigned short. If that is not the case (perhaps because of a
16-bit target, for example) then unsigned short is promoted to unsigned int.

® Other types like (un)signed int, (un)signed long int and (un)signed long
long int promote themselves.

5-49

5 Preparing Source Code for Verification

5-50

Running a Verification

® “Types of Verification” on page 6-2
¢ “Running Verifications on PolySpace Server” on page 6-3
¢ “Running Verifications on PolySpace Client” on page 6-19

¢ “Running Verifications from Command Line” on page 6-24

6 Running a Verification

6-2

Types of Verification

You can run a verification on a server or a client.

Use...

For...

Server

¢ Best performance
e Large files (more than 800 lines of code including comments)

e Multitasking

Client

® An alternative to the server when the server is busy

® Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

Running Verifications on PolySpace® Server

Running Verifications on PolySpace Server

In this section...

“Starting Server Verification” on page 6-3
“What Happens When You Run Verification” on page 6-4

“Managing Verification Jobs Using the PolySpace Queue Manager” on
page 6-5

“Monitoring Progress of Server Verification” on page 6-6

“Viewing Verification Log File on Server” on page 6-9

“Stopping Server Verification Before It Completes” on page 6-11
“Removing Verification Jobs from Server Before They Run” on page 6-12
“Changing Order of Verification Jobs in Server Queue” on page 6-13
“Purging Server Queue” on page 6-13

“Changing Queue Manager Password” on page 6-15

“Sharing Server Verifications Between Users” on page 6-15

Starting Server Verification

Most verification jobs run on the PolySpace server. Running verifications on a
server provides optimal performance.

To start a verification that runs on a server:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Select the Send to PolySpace Server check box next to the Execute
button in the middle of the Launcher window.

Send to Paly=pace Server v P Execute |

6 Running a Verification

6-4

Note If you select Set this option to use the server mode by default
in every new project in the Remote Launcher pane of the preferences,
the Send to PolySpace Server check box is selected by default when you
create a new project.

4 Click Execute.

The verification starts. For information on the verification process, see
“What Happens When You Run Verification” on page 6-4.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

5 When you see the message Verification process completed, click OK
to close the message dialog box.

6 For information on downloading and viewing your results, see “Opening
Verification Results” on page 8-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI® standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see

“Main Generator Options (-main-generator) for PolySpace” in the PolySpace

Client/Server for C User’s Guide.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase completes:

Running Verifications on PolySpace® Server

* A message dialog box tells you that the verification completed. This
message means that the part of the verification that takes place on the
client is complete. The rest of the verification runs on the server.

* A message in the log area tells you that the verification was transferred
to the server and gives you the identification number (Analysis ID) for the
verification. For the following verification, the identification number is 1.

Send to Paly=pace Server v }z Execute |

Cotmpile ; 100%: | Intermediste | 0% Lewvell ; 0% | Lewvell | 0% | Lew

000010 [0; 0 o0 [0 Qo 0 [0 Qo ac
Cumpile Search; 44 | (13
Stats | Status| Description | Fite [Line| cal

@ Full Log l PolySpace Launcher for C verification start st Jan 13, 2009 15:55:7
l The analysis has been gqueued with ID=1

Managing Verification Jobs Using the PolySpace
Queue Manager

You manage all server verifications using the PolySpace Queue Manager (also
called the PolySpace Spooler). The PolySpace Queue Manager allows you to
move jobs within the queue, remove jobs, monitor the progress of individual
verifications, and download results.

To manage verification jobs on the PolySpace Server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6 Running a Verification

6-6

DA n - e & - = L]
Operations Help
1D | Bustheon o Rezuks di CPU Slabis Diate Language|
1] SDEE
2 polyspace Damo C_Desklop & RESULTS\AES .1 BERGEROM | complsted | 28-Dac-20065, 1.233:32 C
Connected o Queus Manager locathost Usar moda

2 Right-click any job in the queue to open the context menu for that

verification.

Follow Progress. ..
Wiew Log File, ..
Download Results. ..

Download Resulks And Remove From Quele. .,

Move Down In Quele

Stop &nd Download Results. ..
Stop &nd Remove From Queue, .

Remove From Queue. ..

3 Select the appropriate option from the context menu.

Tip You can also open the Polyspace Queue Manager Interface by clicking

the PolySpace Queue Manager icon in the PolySpace Launcher toolbar.

Monitoring Progress of Server Verification
You can view the log file of a server verification using the PolySpace Queue

Manager.

To view a log file on the server:

Running Verifications on PolySpace® Server

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

E PolySpace Queue Manager Interface

Operations Help

D | Author Application Fesulks directany CPU|[Status | Date |Langu
wour_name Example_Project C:hpolyspace_projectiresults ange runhing 008, "

2 Right-click the job you want to monitor, and select Follow Progress from
the context menu.

A Launcher window labeled PolySpace follow remote analysis
progress for C appears.

6-7

6 Running a Verification

6-8

PolySpace follow remote code verification progress - | El|ﬂ
File Edit Help
Sendto PalyEpace Server v B Execute | 6 Stop Execution |

@ Compile

Intermediate : 100% vl ;1 3 2vel] 3 =vel2 0 100%

000013

: : 2 Tatal
00:00.07 00:00:06 000004 00:01:36

Searchc 44 |Level 4 (13

% MISRA-C [Certain (Red) errors summary: ;I

NTC, non termination of call to example.c.Square Root, File example.c, line 240, col
NTC, non termination of call to _ polyspace stdstubs.c.sqrt, File example.c, line 1
NTC, non termination of call to example.c.Recursion, File example.c, line 157, colum
ILP, pointer within bounds, File example.c, line 104, column 10

AZRT, failure of user assertion, File _ polyspace_ stdstubsz.c, line 866, column 2

ﬁ Stats B

B Fuieg | _

Kl

hEE

certain
certain
certain
certain
certain

GUI files generation complete.

Generating results in a spreadsheet format in C:ZPoly3pace\Poly3pace RlDatas‘analysislyPolySpac
Generation complete

ook o ok o

Fe% Software Safety Integration Analysis Lewel 4 done

| of

warification completed

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The word
processing appears under the current phase. The progress bar highlights
each completed phase and displays the amount of time for that phase.

The logs report additional information about the progress of the verification.
The information appears in the log display area at the bottom of the
window. The full log displays by default. It display messages, errors, and
statistics for all phases of the verification. You can search the full log by
entering a search term in the Search in the log box and clicking the left
arrows to search backward or the right arrows to search forward.

Click the Compile Log button to display compile phase messages and
errors. You can search the log by entering search terms in the Search in
the log box and clicking the left arrows to search backward or the right

Running Verifications on PolySpace® Server

arrows to search forward. Click on any message in the log to get details
about the message.

4 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.
. Go | .
5 Click the refresh button to update the stats log display as the

verification progresses.

6 Select File > Quit to close the progress window.

When the verification completes, the status in the PolySpace Queue
Manager Interface changes from running to completed.

i PolySpace Queue Manager Interface

Cperations Help
D | Author Application Fiesultz directon CPU| Statuz | Date | Language

vour_name Example_Project C:Apolyspace_projecthresults anze zomplete: (008, ©

Viewing Verification Log File on Server

You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

6-9

6 Running a Verification

6-10

i Polyspace Queue Manager Interface

Cperations Help

D | Author Application Resultz directon CPU| Statuz | Date | Languw

wour_name Example_Project C:Apolyspace_projectiresults anze unning ‘008,

2 Right-click the job you want to monitor, and select View log file.

A window opens displaying the last one-hundred lines of the verification.
" PolySpacehPolySpace_Common'Remotel auncher,whin',ps

GUI files generation complete.

Generating remote file
Done

Certain (red? errors have hbeen detected in the analysed code dugy
SE.

Analysis continuwing bhecause the option —continue—with-red—-error

aE-JnE 30 eE—aE—J0 3o -aE—J0E 30 -eE-aE-JaE-JoE~eE-JnE-Jof e -3aE-Jef-3uE e -JnE-Jnf—3ef e -Jnf-3uf e -JeE-Jaf—Jef e -JeE-JnE e eEIaE—Jaf e -eE—JnE 3o e IaE-Jef-JeE-IeE-JnE-Jef e -Ief-Jnf-Juf-ef-JaE-Jui-ef-
EaXaZad

#3%% Leyel 4 Software Safety Analysis done

EaXaZad

- oE-JmE 30 e e J0f 3o -eE-JmE-Jof -eE -3eE-JeE-JeE-oE-JnE-Jo e 3o -Jef-3uE e -JnE-Jmf 30 e -JmE-3uE e - JeE-JE 30 3o - oE-JnE 30 eEJnE-Jef 3o -eE-JmE 3o e 3eE-Je 3o e -JnE-Jef e -IeE-Jmf-3uf e -JeE-Juf-eE
Ending at: Apr 11, 20008 12:29:8

Uzer time for pass4: 35.8real, 35.8u + Bs

Uzer time for poluyspace—-c: 176.5real. 176.5u + Bs

CalaZad

##% End of PolySpace Uerifier analysis
EakaXad

Presz enter to close the window ...

" T

3 Press Enter to close the window.

Running Verifications on PolySpace® Server

Stopping Server Verification Before It Completes

You can stop a verification running on the server before it completes using
the PolySpace Queue Manager. If you stop the verification, results will be
incomplete, and if you start another verification, the verification starts over
from the beginning.

To stop a server verification:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

i Polyspace Queue Manager Interface

Cperations Help

D | Authar
POLT_Rarne

Application Feszultz directon CPU| Statuz | Date | Languw

Example_Project C:\polpzpace_projecthrezults anze running (008, °

2 Right-click the job you want to monitor, and select one of the following
options:

¢ Kill and download results — Stops the verification immediately
and downloads any preliminary results. The status of the verification
changes from “running” to “aborted”. The verification remains in the
queue.

¢ Kill and remove from queue — Stops the verification immediately
and removes it from the queue.

6-11

6 Running a Verification

Removing Verification Jobs from Server Before They

If your job is in the server queue, but has not yet started running, you can
remove it from the queue using the PolySpace Queue Manager.

Note If the job has started running, you must stop the verification before you
can remove the job (see “Stopping Server Verification Before It Completes”
on page 6-11). Once you have aborted a verification, you can remove it from
the queue.

To remove a job from the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

E PolySpace Queue Manager Interface

Qperations Help

D | Author Application Fesulks directany CPU[Statuz | Date |Langu.
wour_name Example_Project C:\polyspace_project anze unning 008,

2 Right-click the job you want to remove, and select Remove from queue.

The job is removed from the queue.

6-12

Running Verifications on PolySpace® Server

Changing Order of Verification Jobs in Server Queue

You can change the priority of verification jobs in the server queue to
determine the order in which the jobs run.

To move a job within the server queue:

1 Double-click the PolySpace Spooler icon:

Spooler

The PolySpace Queue Manager Interface opens.

i Polyspace Queue Manager Interface

Cperations Help
D | Author Application Feszultz directon CPU| Statuz | Date | Languw
wour_name Example_Project C:\polyzpace_projectirasults anze running 008, °

2 Right-click the job you want to remove, and select Move down in queue.

The job is moved down in the queue.
3 Repeat this process to reorder the jobs as necessary.
Purging Server Queue

You can purge the server queue of all jobs, or completed and aborted jobs
using the using the PolySpace Queue Manager.

Note You must have the queue manager password to purge the server queue.

6-13

6 Running a Verification

To purge the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

i PolySpace Queue Manager Interface

Operations Help

D | Author Application Fesulks directany CPU|[Status | Date |Langu
wour_name Example_Project C:hpolyspace_projectiresults ange runhing 008, "

2 Select Operations > Purge queue. The Purge queue dialog box opens.

x

Fleaze select the action you want to perform and type the administrator pazswiord :

Action Purge completed and aborted analysis j

Purge the entire queaue
Pazsword : Purge completed and aborted analpziz

] I Cancel |

3 Select one of the following options:

®* Purge completed and aborted analysis — Removes all completed
and aborted jobs from the server queue.

® Purge the entire queue — Removes all jobs from the server queue.

6-14

Running Verifications on PolySpace® Server

4 Enter the Queue Manager Password.
5 Click OK.
The server queue is purged.

Changing Queue Manager Password

The Queue Manager has an administrator password to control access to
advanced operations such as purging the server queue. You can set this
password through the Queue Manager.

Note The default password is administrator.

To set the Queue Manager password:

1 Double-click the PolySpace Spooler icon:
The PolySpace Queue Manager Interface opens.

2 Select Operations > Change Administrator Password.
The Change Administrator Password dialog box opens.

3 Enter your old and new passwords, then click OK.

The password is changed.

Sharing Server Verifications Between Users

Security of Jobs in Server Queue

For security reasons, all verification jobs in the server queue are owned by the
user who sent the verification from a specific account. Each verification has a
unique encryption key, that is stored in a text file on the client system.

When you manage jobs in the server queue (download, kill, remove, etc.), the
Queue Manager checks the public keys stored in this file to authenticate
that the job belongs to you.

6-15

6 Running a Verification

6-16

If the key does not exist, an error message appears: “key for verification
<ID> not found”.

analysis-keys.txt File

The public part of the security key is stored in a file named analysis-keys.txt
associated to a user account. This file is located in:

e UNIX® — /home/<username>/.PolySpace

e Windows® — C:\Documents and Settings\<username>\Application
Data\PolySpace

The format of this ASCII file is as follows (tab-separated):

<id of launching> <server name of IP address> <public key>

where <public key>is a value in the range [0..F]
The fields in the file are tab-separated.
The file cannot contain blank lines.

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCES576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

Sharing Verifications Between Accounts

To share a server verification with another user, you must provide the public
key.

To share a verification with another user:

1 Find the line in your analysis-keys.txt file containing the <ID> for the
job you want to share.

2 Add this line to the analysis-keys.txt file of the person who wants to
share the file.

Running Verifications on PolySpace® Server

The second user can then download or manage the verification.

Magic Key to Share Verifications

A magic key allows you to share verifications without copying individual
keys. This allows you to use the same key for all verifications launched from
a single user account.

The format for a magic key is as follows:

0 <Server id> <your hexadecimal value>

When you add this key to your verification-key.txt file, all verification
jobs you submit to the server queue use this key instead of a random one.
All users who have this key in their verification-key.txt file can then
download or manage your verification jobs.

Note This only works for verification jobs launched after you place the magic
key in the file. If the verification was launched before the key was added, the
normal key associated to the ID is used.

If analysis-keys.txt File is Lost or Corrupted

If your analysis-keys. txt file is corrupted or lost (removed by mistake) you
cannot download your verification results. To access your verification results
you must use administrator mode.

Note You must have the queue manager password to use Administrator
Mode.

To use administrator mode:

1 Double-click the PolySpace Spooler icon:

6-17

6 Running a Verification

The PolySpace Queue Manager Interface opens.

E PolySpace Queue Manager Interface

Operations Help

D | Author Application Fesulks directany CPU|[Status | Date |Langu
wour_name Example_Project C:hpolyspace_projectiresults ange runhing 008, "

2 Select Operations > Enter Administrator Mode.
3 Enter the Queue Manager Password.
4 Click OK.

You can now manage all verification jobs in the server queue, including
downloading results.

6-18

Running Verifications on PolySpace® Client

Running Verifications on PolySpace Client

In this section...

“Starting Verification on Client” on page 6-19

“What Happens When You Run Verification” on page 6-20
“Monitoring the Progress of the Verification” on page 6-21
“Stopping Client Verification Before It Completes” on page 6-22

Starting Verification on Client

For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

If you launch a verification on C code containing more than 2,000 assignments
and calls, the verification will stop and you will receive an error message.

To start a verification that runs on a client:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 3, “Setting Up a Verification Project”.

3 Ensure that the Send to PolySpace Server check box is not selected.

4 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning only appears when you clear the Send to PolySpace
Server check box.

5 Click the Execute button.

6-19

6 Running a Verification

6-20

},‘f Execute |

6 If you see a caution that PolySpace software will remove existing results
from the results directory, click Yes to continue and close the message
dialog box.

The progress bar and logs area of the Launcher window become active.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 7-2.

7 When the verification completes, a message dialog box appears telling you
that the verification is complete and asking if you want to open the Viewer.

S x|
@ yerification process completed.
Do o wank ta launch PalySpace Yiewer 7
Cancel |

8 Click OK to open your results in the Viewer.

For information on viewing your results, see “Opening Verification Results”
on page 8-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C compiler, it ensures that your
code is portable, maintainable, and complies with ANSI standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see

Running Verifications on PolySpace® Client

“Main Generator Options (-main-generator) for PolySpace” in the PolySpace
Client/Server for C User’s Guide.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

Monitoring the Progress of the Verification

You can monitor the progress of the verification by watching the progress bar
and viewing the logs at the bottom of the Launcher window.

Send to PolySpace Server | B Execite |

Compile © 90% | Intermediate © 0% | Levell : 0% | Levell : 0% | Leve
;0o 0 0 Qo 0 0 Qo 0 ;00 00 ([nH]

Cnmpile Searct: 44 | (1
Ef msrac | stes] Description | File | tne [col

Stats 1 |F‘|:|I~,=Spa|:e Launcher for C werifi... | | |

& Full Log

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the log
display area at the bottom of the Launcher window.

To view the logs:

1 The compile log is displayed by default.
This log displays compile phase messages and errors. You can search the
log by entering search terms in the Search in the log box and clicking the

left arrows to search backward or the right arrows to search forward. Click
on any message in the log to get details about the message.

6-21

6 Running a Verification

6-22

2 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

59
3 Click the refresh button Ll to update the stats log display as the
verification progresses.

4 Click the Full Log button to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

Stopping Client Verification Before It Completes

You can stop the verification before it completes. If you stop the verification,
results will be incomplete, and if you start another verification, the verification
starts over from the beginning.

To stop a verification:

1 Click the Stop Execution button.

@ Stop Execution |

A warning dialog box appears.

Warming x|

@ Do waou really want to stop the current execukion ?

o |

2 Click Yes.

The verification stops and the message Verification process stopped
appears.

Running Verifications on PolySpace® Client

3 Click OK to close the Message dialog box.

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

6-23

6 Running a Verification

Running Verifications from Command Line

In this section...

“Launching Verifications in Batch” on page 6-24

“Managing Verifications in Batch” on page 6-24

Launching Verifications in Batch

A set of commands allow you to launch a verification in batch.
All these commands begin with the following prefixes:

® Server verification —
<PolySpaceInstallDir>/Verifier/bin/polyspace-remote-c

¢ (Client verification —polyspace-remote-desktop-c

These commands are equivalent to commands with a prefix
<PolySpaceInstallDir>/bin/polyspace-.

For example, polyspace-remote-desktop-c -server
[<hostname>:[<port>] | auto] allows you to send a C client
verification remotely.

Note If your PolySpace server is running on Windows, the batch
commands are located in the /wbin/ directory. For example,
<PolySpaceInstallDir>/Verifier/wbin/polyspace-remote-c.exe

Managing Verifications in Batch

In batch, a set of commands allow you to manage verification jobs in the
server queue.

On UNIX platforms, all these command begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-.

6-24

Running Verifications from Command Line

On Windows platforms, these commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/wbin/psqueue-:

® psqueue-download <id> <results dir>— download an identified
verification into a results directory.
= [-f] force download (without interactivity)
= -admin -p <password> allows administrator to download results.
= [-server <name>[:port]] selects a specific Queue Manager.
= [-v]|version] gives release number.

® psqueue-kill <id> — kill an identified verification.

® psqueue-purge all|ended — remove all completed verifications from
the queue.

® psqueue-dump — gives the list of all verifications in the queue associated
with the default Queue Manager.

® psqueue-move-down <id>— move down an identified verification in the
Queue.

® psqueue-remove <id>— remove an identified verification in the queue.
® psqueue-get-gm-server — give the name of the default Queue Manager.

® psqueue-progress <id>: give progression of the currently identified and
running verification.

= [-open-launcher] display the log in the graphical user interface of
launcher.

= [-full] give full log file.

= psqueue-set-password <password> <new password> — change
administrator password.

® psqueue-check-config — check the configuration of Queue Manager.
= [-check-licenses] check for licenses only.

® psqueue-upgrade — Allow to upgrade a client side (see the PolySpace
Installation Guide in the <PolySpace Common Dir>/Docs directory).

= [-list-versions] give the list of available release to upgrade.

6-25

6 Running a Verification

= [-install-version <version number> [-install-dir
<directory>1] [-silent] allow to install an upgrade in a given
directory and in silent.

Note <PolySpaceCommonDir>/bin/psqueue-<command> -h gives
information about all available options for each command.

6-26

Troubleshooting
Verification Problems

® “Verification Process Failed Errors” on page 7-2
® “Compile Errors” on page 7-6

* “Link Messages” on page 7-12

® “Stubbing Errors” on page 7-17

® “Intermediate Language Errors” on page 7-25

¢ “Reducing Verification Time” on page 7-27

7 Troubleshooting Verification Problems

Verification Process Failed Errors

In this section...

“Overview” on page 7-2

“Hardware Does Not Meet Requirements” on page 7-2

“You Did Not Specify the Location of Included Files” on page 7-2
“PolySpace Software Cannot Find the Server” on page 7-3

“Limit on Assignments and Function Calls” on page 7-4

Overview

If you see a message that saying Verification process failed, it indicates
that PolySpace software could not perform the verification. The following
sections present some possible reasons for a failed verification.

Hardware Does Not Meet Requirements

The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientc/requirements.html.

To determine if this is the cause of the failed verification, search the log for
the message:

Errors found when verifying host configuration.
You can:

e Upgrade your computer to meet the minimal requirements.

¢ Select the Continue with current configuration option in the General
section of the Analysis options and run the verification again.

You Did Not Specify the Location of Included Files

If you see a message in the log, such as the following, either the files are
missing or you did not specify the location of included files.

http://www.mathworks.com/products/polyspaceclientc/requirements.html

Verification Process Failed Errors

include.h: No such file or directory

For information on how to specify the location of include files, see “Creating
New Projects” on page 3-8.

PolySpace Software Cannot Find the Server

If you see the following message in the log, PolySpace software cannot find
the server.

Error: Unknown host

PolySpace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Edit > Preferences.

2 Select the Remote Launcher tab.

7 Troubleshooting Verification Problems

7-4

x

Tools henu Remote Launcher | Miscellaneuusl Feszult direu:tu:ur':.fl Default directory | Generic targets I
Remate configuration
v Set this option to uze the server mode by default in every hevy project

Mate: this option iz mandatory when the project containg multitasking options.

The multitazking options will be ighared athetwize.

0 Automatically detect the remate server

' Use the folloving setver and port

The setver name "localhost" can be uzed if the server iz the local machine.

0]34 Apigaly Cancel

By default, PolySpace software automatically finds the server. You can
specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the PolySpace Installation Guide.

Limit on Assignments and Function Calls

If you launch a client verification on a large file, the verification may stop and
you may receive an error message saying the number of assignments and
function calls is too big. For example:

kkhkkhkkhkhkhkhkhkhkkhkhkhhhhkhkhkkhkhdhhhhkhhkhkhkhhhhhkhkhkhddhhkhkhhkkhkkhkhkhhkhhkkxdkrkdkx%x%

Beginning C to intermediate language translation
kkhkkhkkhkhkhkhkhkhkkhkhkhhhhkhhkhkhkhhhhhhkhkhkkhkhhhhhhkhhdhhhhhhhkkhkhkhhkhkhkdhdkdkxx%x

C to intermediate language translation 1 (P_SP)

*** | icense error: number of assignments and function calls is

Verification Process Failed Errors

too big for -unit mode (5534 v.s 2000).
*** Aborting.

PolySpace Client for C/C++ software can only verify C code with up to 2,000
assignments and calls.

To verify code containing more than 2,000 assignments and calls, launch your
verification on the PolySpace Server for C/C++.

7-5

7 Troubleshooting Verification Problems

Compile Errors

In this section...

“Overview” on page 7-6

“Examining the Compile Log” on page 7-6

“Syntax error” on page 7-8

“Undeclared identifier” on page 7-8

“No such file or directory” on page 7-9

“Compilation errors with keywords: @interrupt, @address(0xABCDEF)”

on page 7-9

Overview

PolySpace software may be used instead of your chosen compiler to make
syntactical, semantic and other static checks. These errors will be detected
during the standard compliance checking stage, which takes about the same
amount of time to run as a compiler. The use of PolySpace software this early
in development yields a number of benefits:

e detection of link errors, plus errors which are only apparent with reference
to two or more files;

® objective, automatic and early control of development work (perhaps to
avoid errors prior to checking code into a configuration management
system).

Examining the Compile Log

The compile log displays compile phase messages and errors. You can search
the log by entering search terms in the Search in the log box and clicking
the left arrows to search backward or the right arrows to search forward.

To examine errors in the Compile log:

1 Click the Compile button in the log area of the Launcher window.

A list of compile phase messages appear in the log part of the window.

Compile Errors

Cnmpile Search: 44 | (43

Stats |5 | Description | File | |co
@ Full Log l PaolySpace Launcher for C werification start at Jan 13, 200,
global declaration of 'cos' function has incormpatible type v |[mathl o

procedure main multiply defined previously defined at math. .. |math2.c
Werifier haz detected cross-files error(s) in the code.

[43]

[2%]

2 Click on any of the messages to see message details, as well as the full
path of the file containing the error.

Search: 44 I 43

Dietail
.o | Description Fie |Li.|cal
i |PolySpace Launcher for C verification start st Jan 13, 200, | . i .
global declarstion of 'cos' function has incompatible type w... mathl 5 File C:hPolydpaceipolyspace prajectisourcesinathi.c line 2

i

T |verifier has detected cross-files error(s) in the code. Error:

procedure main multiply defined
previously defined at mathl.c:Z

3 To open the source file referenced by any message, right click the row for
the message, then select Open Source File.

5. | Diescription File |Li.|col
I, PolySpace Launcher for C werification start &t Jan 13, 200,
global declaration of 'cos' function has incompatible type w. ..
dure main multiply firvec] por gt =
¥ |Werifier has detected cross-files e %= Open Source File
s Configure Editar |

mathl .z o

The file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 3-16.

4 Correct the error and run the verification again.

7 Troubleshooting Verification Problems

Syntax error

Log File

Code Used

Verifying compilation.c
compilation.c:3: syntax error; found

“x' expecting ;'
compilation.c:3: wundeclared identifier
!

void main(void)
{

int far x;

x = 0;

X++;

}

The “far” keyword is unknown in ANSI C. At “compilation” time, it therefore
causes confusion - should it be a variable, or maybe a qualifier? The
construction “int far x;” is illegal without any further information, and hence
it 1s a syntax error. Here are some possible corrections:

® Remove far from the source code;

® Define far as a qualifier such as const or volatile;

® Remove far artificially by specifying a compilation flag like: “-D far=

(with a space after the equal sign).

Note If you need to specify -D compilation flags which are generic to the
project, then using the -include option may be the most efficient solution.
Refer to “How to Gather Compilation Options Efficiently” on page 4-19.

Undeclared identifier

Log File Code Used
compilation.c:3: wundeclared identifier void main(void)
! {

x = 0;

X++;

}

Should x be a float, an int or a char? The type is unknown, and therefore

the compilation stops.

Compile Errors

Sometimes variables are implicitly defined by certain cross compilers. They
need to be declared before verification begins, as PolySpace software has no
knowledge about implicit variables.

Similarly “__SP” can be interpreted as a reference to the stack pointer by
some compilers, which may be dealt with by using the -D compilation flag.

Note If you need to specify -D compilation flags which are generic to the
project, then using the -include option may be the most efficient solution.
Refer to “How to Gather Compilation Options Efficiently” on page 4-19.

No such file or directory

Log File Code Used

compilation.c:1: one_file.h: No such #include "one_file.h"
file or directory

compilation.c:1: catastrophic error: #include "one_file.h"
could not open source file "one_file.h"

The file called “one_file.h” is missing. The include directory holding this file
must be made known to PolySpace. Refer to the -I option in the launcher.

These files are essential for PolySpace to complete the compilation. They
will be used:

¢ for data coherency;

¢ for automatic stubbing.

Compilation errors with keywords: @interrupt,
@address(OxABCDEF)

You might have the same error message as for a regular compilation error,
as discussed previously when using some non ANSI keyword containing
for example @ as a first character. But in this case, the problem cannot be
addressed by means of a compilation flag, nor with an -include file.

In this case, you need to use the -post-preprocessing option.

7-9

7 Troubleshooting Verification Problems

When this option is applied, the specified script file or command is run just
after the preprocessing phase on each source file. The script executes on each
preprocessed c file. The command should be designed to process the standard
output from preprocessing and produce its results in accordance with that
standard output.

Note You can find each preprocessed file in the results directory in the
zipped file ci.zip located in <results>/ALL/SRC/MACROS. The extension of
the preprocessed file is .ci.

It is important to preserve the number of lines in the preprocessed .ci file.
Adding a line or removing one could result in some unpredictable behavior on
the location of checks and MACROS in the PolySpace viewer.

Example:

Save the following script in a file named myscript.pl.

#!/usr/bin/perl
bin STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)

{

Replace keyword titi with toto

$line =~ s/titi/toto/g;

Remove @interrupt (replace with nothing)
$line =~ s/@interrupt/ /g;

DONT DELTE: Print the current processed line to STDOUT
print $line;

}

Now use the command post-preprocessing-command
%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe
<absolute path to myscript.pl>\myscript.pl to run the above script
on each preprocessed c file.

7-10

Compile Errors

Note If you are running PolySpace software version 5.1 (r2008a) or later

on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin

1s no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

%POLYSPACE_C%\Verifier\tools\perl\win32\bin\perl.exe

7-11

7 Troubleshooting Verification Problems

Link Messages

In this section...

“Overview” on page 7-12

“Function: Wrong Argument Type” on page 7-12
“Function: Wrong Argument Number” on page 7-13
“Variable: Wrong Type” on page 7-14

“Variable: Signed/Unsigned” on page 7-14
“Variable: Different Qualifier” on page 7-15
“Variable: Array Against Variable” on page 7-15
“Variable: Wrong Array Size” on page 7-16

“Missing Required Prototype for varargs” on page 7-16

Overview
This section gives some examples of link errors.

Note Looking at the preprocessed code can help to find errors faster.
They are located in the <<results directory>>/C-ALL/ or <<results
directory>>/ALL/SRC/MACROS. These files have a .ci extension.

Function: Wrong Argument Type

PolySpace Output:

Verifying cross-files ANSI C compliance ...

Error: global declaration of 'f' function has incompatible type with its definition
declared function type has 'arg 1' type incompatible with definition
declared 'pointer' (32) type incompatible with defined 'float' (32) type

7-12

Link Messages

PolySpace Output:

int f(float y) int f(int *y);
{
int r; void main(void)
r=12; {
} int r;
r = f(&r);
}

Here, the first parameter for the “f” function is either a float or a pointer to an integer - but
either way, the global declaration must match the definition. The error is explained in the
textual output generated by PolySpace during the linking phase.

Function: Wrong Argument Number
PolySpace Output:

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'f' function has incompatible type with its definition
declared function type has incompatible args. number with definition

int f(int y, int z) int f(int y);
{
int r; void main(void)
r=12; {
} int r;
r=f(r);
}

These two functions haven’t the same number of arguments, which would result in non
determinism during execution. The error is explained in the textual output generated by
PolySpace during the linking phase.

7-13

7 Troubleshooting Verification Problems

7-14

Variable: Wrong Type

PolySpace Output:

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'float' (32) type incompatible with defined 'int' (32) type

extern float x; int x;
void main(void)

{}

The“x” variable must be declared in the same way in every file. If a variable x 1s as an integer
equal to 1, which is 0x0001, what does this value mean when seen as a float? It could result
in a NAN (Not A Number) during execution.

Variable: Signed/Unsigned

PolySpace Output:

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'unsigned' type incompatible with defined 'signed' type

extern unsigned char x; char x;
void main(void)

{}

Consider the 8 bit binary value 10000010. Given that a char is coded in 8 bits, it is not clear
how this should be considered in the code snippet shown; maybe 130 (unsigned), maybe -126
(signed). PolySpace highlights the ambiguity.

Link Messages

Variable: Different Qualifier

PolySpace Output:

Verifying cross-files ANSI C compliance ...

Warning: global declaration of 'x' variable has incompatible type with its definition
declared 'non qualified' type incompatible with defined 'volatile' type
'volatile' qualifier used

extern int x; volatile int x;

void main(void)

{}

The qualifier taken into account by PolySpace is the one with the most onerous implications for
the verification. However, there is doubt regarding which statement is correct, and so PolySpace
generates a warning.

Variable: Array Against Variable

PolySpace Output:

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared 'array' (384) type incompatible with defined 'int' (32) type

extern int x[12]; int x;

void main(void)

{

}

The real allocated size for the x variable is one integer. Any function attempting to manipulate
x[] would corrupt the memory. PolySpace textual output highlights this error.

7-15

7 Troubleshooting Verification Problems

7-16

Variable: Wrong Array Size

PolySpace Output:

Verifying cross-files ANSI C compliance ...
Error: global declaration of 'x' variable has incompatible type with its definition
declared array type has 'upper bound' 12 out of range 5

extern int x[12]; int x[5];

void main(void)

{

}

The real allocated size for the x variable is five integers. Any function attempting to manipulate

x[] between x[5] and x[11] will in fact corrupt the memory. PolySpace textual output highlights
this error.

Missing Required Prototype for varargs

PolySpace Output:

Verifying cross-files ANSI C compliance ...
Error: missing required prototype for varargs. procedure 'g'.

void g(int, ...); void main(void)
{

void f(void) g(4);

{ }

g(12, abcde ,40);

}

The prototype for “g” must also be declared when the main is used.

To get rid of this error without modifying the main (by adding the line “void g(int, ...)”), you
can include that line in a new file called (say) generic_for_example.h and then use the option
—include “c:\PolySpace\generic_for_example.h” when your verification is launched.

Stubbing Errors

Stubbing Errors

In this section...

“Errors when Compiling _polyspace_stdstubs.c” on page 7-17

“Errors when Creating Automatic Stubs” on page 7-22

Errors when Compiling _polyspace_stdstubs.c
e “Standard Error Messages” on page 7-17

® “Troubleshooting” on page 7-19

Standard Error Messages
There may be occasions when a code set compiles for a target but when that

same code is verified with PolySpace, an error message is generated during
the compilation phase for _ polyspace_stdstubs.c .

The following are example error messages. They highlight conflicts between a
standard library function which is included as part of the application, and one
of the standard stubs that PolySpace uses in place of that function.

Stubbing standard library functions ...

C-STUBS/__polyspace__stdstubs.c:1117: string.h: No such file
or directory

Verifying C-STUBS/__polyspace__stdstubs.c

C-STUBS/__polyspace__stdstubs.c:1118: syntax error; found
‘strlen' expecting *;’

C-STUBS/__polyspace_stdstubs.c:1120: syntax error; found “i'
expecting ;'

C-STUBS/__polyspace stdstubs.c:1120: undeclared identifier “i'

7-17

7 Troubleshooting Verification Problems

7-18

Stubbing standard library functions ...
Verifying C-STUBS/__polyspace__stdstubs.c

Error: missing required prototype for varargs. procedure
‘sprintf'.

Stubbing standard library functions ...
Verifying C-STUBS/__polyspace__stdstubs.c
C-STUBS/__polyspace_ stdstubs.c:3027: missing parameter 4 type

C-STUBS/__polyspace__stdstubs.c:3027: syntax error; found 'n'
expecting ")

C-STUBS/__polyspace__stdstubs.c:3027: skipping 'n'
C-STUBS/__polyspace_ stdstubs.c:3037: wundeclared identifier 'n'

The code uses standard library functions such as sprintf and strcpy and the
examples above suggest problems with these functions.

Such problems can best be addressed by restarting the verification including
the header file containing the prototype and the required definitions, as used
during compilation for the target. The least invasive way of doing this is to
use the -I option.

Failing that, a selection of files is provided that contain stubs for most
standard library functions which can be used in place of automatic stubbing.

For this to work effectively, it i1s important for you to provide the correct
include file for the function. In the following example, the standard library
function is strlen. This assumes that string.h has been included. Because
the string.h file may differ between targets, there are no default include
directories for PolySpace.

Thus, if the compiler has implicit include files, they must be manually
specified as illustrated in the following example.

Stubbing Errors

(_polyspace_stdstubs.c located in <<results_dir>>/C-ALL/C-STUBS)

_polyspace_stdstubs.c
#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)
#include <string.h>
size t strlen(const char *s)
{
size t i=0;
while (s[i] != 0)
i++;
return ij;

}
#endif /* _polyspace_strlen */

If problems remain, refer to the solutions below.

Troubleshooting

There may be occasions where restarting the verification including the
missing header file(s) using the -I option will not solve the problem. There are
3 potential solutions:

® “Where precision is important and preparation time is not a problem” on
page 7-19

® “Where preparation time is short or problems remain after trying solution
1” on page 7-20

¢ “Where all other attempts have failed” on page 7-21
Where precision is important and preparation time is not a problem.

1 Copy <<results _dir>>/C-ALL/C-STUBS/ _ polyspace_stdstubs.c to
the source directory and rename it polyspace_stubs.c.

2 This file contains the whole list of stubbed functions, user functions and
standard library functions. For example:

#define _ polyspace_strlen
#define a_user_function

3 Find the problem function in the file.

7-19

7 Troubleshooting Verification Problems

7-20

#if defined(_polyspace_strlen) || ... || defined(_polyspace_strtok)

#include <string.h>
size t strlen(const char *s)

{

size_t i=0;

while (s[i] != 0)
i++;

return ij;

}
#endif /* _ polyspace_strlen */

This is the stubbed definition for the function causing the problem, and
hence the verification requires the applications own string.h include file.

4 EITHER extract the relevant part of that file for inclusion in the
verification.

For example, for strlen:-
string.h
// put it in the /homemade_include directory
typedef int size_t;

size_t strlen(const char *s);

OR, preferably, provide the string.h file that contains the real prototype
and type definitions for the stubbed function.

5 Specify the path for the include files and relaunch PolySpace:
polyspace-c -I /homemade_include
or
polyspace-c -I /our_target_include_path

Where preparation time is short or problems remain after trying
solution 1.

1 Identify the function name causing the problem (sprintf, say);

2 If no prototype for this function can be found, provide a .c file containing
the prototype for this function;

Stubbing Errors

3 Restart the verification either with the PolySpace Launcher or from the
command line.

Other _ polyspace_no_function_name options can be found in
__polyspace__stdstubs.c files, such as

__polyspace_no_vprintf
__polyspace_no_vsprintf
__polyspace_no_fprintf
__polyspace_no_fscanf
__polyspace_no_printf
__polyspace_no_scanf
__polyspace_no_sprintf
__polyspace_no_sscanf
__polyspace_no_fgetc
__polyspace_no_fgets
__polyspace_no_fputc
__polyspace_no_fputs
__polyspace_no_getc

Note If you are considering defining multiple project generic -D options, then
using the -include option may provide a more efficient solution to this type of
error. Refer to “How to Gather Compilation Options Efficiently” on page 4-19.

Where all other attempts have failed. To ignore _ polyspace_stdstubs.c
but still see which standard library functions are in use:

1 Deactivate all standard stubs using the option -D
POLYSPACE_NO_STANDARD_STUBS. For example:

polyspace-c -D POLYSPACE_NO_STANDARD_STUBS

or

Deactivate all stubbed extensions to ANSI C standard by using -D
POLYSPACE_STRICT_ANSI_STANDARD_STUBS. For example:

polyspace-c -D POLYSPACE_STRICT_ANSI_STANDARD_STUBS

7-21

7 Troubleshooting Verification Problems

7-22

This will present a list of functions PolySpace tries to stub, as well as the
standard functions in use (most probably without any prototype). You
will have the following type of message:

* Function strcpy may write to its arguments and may
return parts of them. Does not model pointer effects.
Returns an initialized value.

Fatal error: function 'strcpy' has unknown prototype
2 Add a “proper” include file in the C file that uses your standard library
function. If PolySpace is restarted with the same options, the default
behavior for these stubs for this particular function will result.
Consider the example size t strcpy(char *s, const char *i)

® Stubbed to write anything in *s

® Stubbed to return any possible size_t.

Note If the problem remains after trying all 3 solutions, contact PolySpace
support.

Errors when Creating Automatic Stubs

There are three different types of error messages which may be generated
during the automatic creation of stubs.

Error 1

PolySpace output
Fatal error: function 'f' refers to a function pointer either
much too complex or in a too-complex data-structure, or with
unknown parameters.

It cannot be stubbed automatically.

Consider a prototype f which contains a function pointer as a parameter.

Stubbing Errors

If the function pointer prototype only contains scalars and/or floats
then “f” will be stubbed automatically.

For example, the following function will be stubbed automatically:

int f(
void (*ptr_ok)(int, char, float),
other_typel1 other_parami);

If this function pointer prototype also contains pointers, the use will
get the error message and will have to stub the “f’ function manually

For example, the following function will need to be stubbed manually by
default (unless the -permissive-stubber option is used):

int f(
void (*ptr_ok)(int *, char, float),
other_type1 other_paramil);

Error 2

PolySpace output
Fatal error: function 'f' has unknown prototype
Error message explanation:
"function has wrong prototype" means that either the function
has no prototype or its prototype is not ANSI compliant.
"task is undefined" means that a function has been declared
to be a task but has no known body

For any function to be automatically stubbed, PolySpace needs the prototype.

Error 3

PolySpace output
*** \lerifier found an error in parameter -entry-points: task "w"
must be a userdef function

--- Found some errors in launching command. ---

7-23

7 Troubleshooting Verification Problems

--- Please consult rte-kernel -h to correct them ---
--- and launch the verification again. ---

No function or procedure declared to be an -entry-point can be an
automatically stubbed function.

7-24

Intermediate Language Errors

Intermediate Language Errors

The verification log can sometimes indicate that a red error has been detected
in the previous phase, and that the verification has therefore stopped. If no
graphical result is provided, the errors and their locations are listed at the
end of the log file. To find them, you can scroll through the verification log
file starting at the end and working backwards.

Note This example only explains where to find the error list. Their meaning
and the error messages themselves are detailed in the next section.

The log file may be similar to this one:

***** G to intermediate language translation 13.29 (P_SENUP) took
0.000773real, 0.000773u + 0.0s

1 User Program Errors:

* failure of correctness condition [non-initialized variable]

"&" file intermediate.c line 5 column O

Please correct the program and restart the verifier.

x G to intermediate language translation 13.30 (IL Partition)
0 empty package(s) removed

x G to intermediate language translation 13.30 (IL Partition)
took 0.002252real, 0.002252u + 0.0s

**** G to intermediate language translation 13 (P_IL) took
1.069168real, 1.069168u + 0.0s

0 empty package(s) removed

**** G to intermediate language translation 14 (P_IPF)

96% init procedures removed

**** G to intermediate language translation 14 (P_IPF) took
0.002401real, 0.002401u + 0.0s

* terminating ../il-sources/a0.ads

* terminating ../il-sources/a0.adb

**** G to intermediate language translation 15 (P_TW)

**** G to intermediate language translation 15 (P_TW) took
0.003055real, 0.003055u + 0.0s

7-25

7 Troubleshooting Verification Problems

7-26

* assigns: 100% reduction

* asserts: 100% reduction

* total : 54% reduction

User time for command “iabc-c2if -input-file': 17 seconds on
parisi2

EEEEEEEEEEE S S S SR EEE S SRR SRR SRR EEEEEEEREEEEEEEEEEREEESSE S

* k%

*** G to intermediate language translation done

* k%%

EEEEEEEEEEE S S S SRR RS S SRR SRR SRR EEEEEEEREEEEEEEEEEEEEESE S

Ending at: Oct 31, 2002 14:29:26
Certain (red) errors detected during previous phase.
You must correct them before continuing.

host

Reducing Verification Time

Reducing Verification Time

In this section...

“How Far has the Verification Progressed? How Can I Predict the
Duration?” on page 7-27

“An Ideal Application Size” on page 7-29

“Why Should there be an Optimum Size?” on page 7-30
“Switch the Antivirus Off” on page 7-31

“Tuning PolySpace Parameters” on page 7-31
“Selecting a Subset of Code” on page 7-32

“A Decision Algorithm to Speed-Up a Verification: Hints and
Troubleshooting” on page 7-37

“What are the Benefits of these Methods?” on page 7-42

How Far has the Verification Progressed? How Can |
Predict the Duration?

The duration of a verification is impacted by:

® The size of the code
¢ The number of global variables

¢ The nesting depth of the variables (the more nested they are, the longer
it takes)

¢ The depth of the call tree of the application

¢ The “intrinsic complexity” of the code, particularly with regards to pointer
manipulation

The fact that so many factors are involved make it impossible to derive

a precise formula to calculate verification duration. Instead, PolySpace
software provides textual output to illustrate how much progress has been
made (available under Linux and Windows). This progress text is located in
the “product_installation_dir”/tools/ and is called polyspace-stats.

7-27

7 Troubleshooting Verification Problems

Example

/cygdrive/C/PolySpace/2.4/Verifier/tools/polyspace-stats
my_log_file.txt

S fcygdriue/C/PulySpace/ﬁ;4>Ué;ifier éﬁdlé)pﬁlbéﬁaée—stats PolySpace_ 2 4 1 21 N
ey _Projeci 8225 200411 h5A. Ing
PolySpace Uerifier 2.4 1 21 =

= ername Harc
Hostname laptop
esults directory socygdrivesc-PolySpace_Results

Humbher of files Fi 1
umbher of lines -] 27
Mumber of lines without comments = 268

The completed passes are the following =
C sources verification = B:88:48
C to intermediate language translation : B:@A:16
IL compilation = B:08:28
Control and Data Flow Analysis [1-31] A:08:-8%
Control and Data Flow finalysis B:AA:=01
Control and Data Flow Analysis B:AA:=A2
Control and Data Flow finalysiz -0 S

urpently in Level 1 Software Safety Analysis :

4 .atz files out of a total of 4 were analused for thisz pass @ B:88:46

Pleaze refer to file: -cygdriverscTolySpace_Reswits -FolySpace 2 4 1 21 Mew_ Projec

t_@3_25 2084—11h568.1log for further information.

5

Consider the area displaying:

Currently in Level 1 Software Safety Analysis

4 .atz files out of 4 were analysed for this pass: 00:00:46

It can be deduced that

¢ The proportion of files analyzed for this integration level (4/4)

® The elapsed time : 46 seconds

7-28

Reducing Verification Time

The remaining verification duration can be deduced by extrapolating from
this data by considering the number of files and passes still to be completed.

An Ideal Application Size

There always is a compromise between the time and resources required to
analyze an application, and the resulting selectivity. The larger the project
size, the broader the approximations made by PolySpace software. These
approximations enable PolySpace software to extend the range of project sizes
1t can manage, to perform the verification further and to solve traditionally
incomputable problems. However, they also mean that the benefits derived
from verifying the whole of a large application have to be balanced against
the loss of precision which results.

This is why it is recommended to begin with file by file verifications
(when dealing with C language), package by package verifications
(when dealing with Ada language) and class by class verifications
(when dealing with C++ language). The maximum application size is
between twenty (for C++) and fifty thousand lines of code (for C and Ada). For
such applications, approximations should not be too significant. Take care
that some times verification time should not be reasonable.

Experience suggests that subdividing an application prior to verification will
normally have a beneficial impact on selectivity — that is, more red,
green and gray checks, fewer unproven and therefore more efficient
bug detection.

7-29

7

Troubleshooting Verification Problems

7-30

%4 of oranges

Oranges due to complexity

Oranges due to
missing parts of the
software

Size (lines of code)

Best usage,
Between 20 and 50K linez

A compromise between selectivity and size

Why Should there be an Optimum Size?

PolySpace software has been used to analyze numerous applications with
greater than one hundred thousand lines of code. However, as project sizes
become very large, PolySpace:

¢ Makes broader approximations, producing more oranges

¢ (Can take much more time to analyze the application.

PolySpace verification is most effective when it is used as early as possible
in the development process, i.e. BEFORE any other form of testing.

When a small module (file, piece of code, package, etc.) is analyzed using
PolySpace software, the focus should be on the red and gray checks. Orange
unproven checks at this stage are of a very useful interest, as most of them
deal with robustness of the application. They will change to red, gray or green
as the project progresses and more and more modules are integrated.

Reducing Verification Time

During the integration process, there might be a point where the code becomes
so large (maybe 50000 lines of code or more) that the verification of the whole
project is not achievable within a reasonable amount of time. Then there

are two options.

® Stop the use of PolySpace verification at this stage (a lot of the benefits
have been achieved already), or

® Analyze subsets of the code.

Switch the Antivirus Off

Disabling or switching off any third party antivirus software for the duration
of a verification can reduce the verification time by up to forty percent.

Tuning PolySpace Parameters

here is a compromise to be made to balance the time required to perform a
verification, and the time required to review the results. Launching PolySpace
verification with the following options will allow the time taken for verification
to be reduced but will compromise the precision of the results which will
therefore take longer to review. It is suggested that the parameters should be
used in the sequence shown - that is, if the first suggestion does not increase
the speed of verification sufficiently then introduce the second, and so on.

e Switch from -O2 to a lower precision;

® Set the -respect-types-in-globals and -respect-types-in-fields
options;

e Set the -k-1imiting option to 2, then 1, or O;
® Manually stub missing functions which write into their arguments.

e If some big arrays are used, set the -no-fold option.
For example, an appropriate launching command might be

polyspace-c -00 -respect-types-in-globals -k-limiting O

7-31

7 Troubleshooting Verification Problems

7-32

Selecting a Subset of Code

If a project is subdivided for verification purposes, then the total verification
time will be considerably shorter for the sum of the parts than for the whole
project considered in one pass. A logical way to set about splitting the project
in this way is to consider data flow.

In such an application, there are two distinct concepts to consider:

e function entry-points — Function entry-points refer to the PolySpace
execution model since they are started concurrently, without any
assumption regarding sequence or priority. They represent the beginning
of your call tree;

¢ data entry-points — Regard lines in the code where data is acquired as
"data entry points".

Consider the examples below.

Example 1

int complete_treatment_based_on_x(int input)

{

thousand of line of computation...

}
Example 2
void main(void)

int x;
X = read_sensor();
y = complete_treatment_based_on_x(x);

Example 3

#define REGISTER_1 (*(int *)0x2002002)
void main(void)

{

X
y

REGISTER_1;
complete_treatment_based_on_x(x);

Reducing Verification Time

}

In each case, the "x" variable is a data entry point and “y” is the consequence

of such an entry point. "y" may be formatted data, due to a very complex
manipulation of x.

Since x is volatile, a probable consequence will be that y will contain all
possible formatted data. An approximation could be to remove the procedure
complete_treatment_based_on_x completely, and let automatic stubbing
work. "y" will then be considered as potentially taking any value in the full
range data (see “Stubbing” on page 5-2).

//removed definition of complete_ treatment_based on_x

void main(void)

{
X
y

}

// what ever
complete treatment_based_on_x(x); // now stubbed!

Consequences of Subdividing Code
® (-) Some loss of precision on y. PolySpace will now consider all possible
values for y, including those specified for the first verification;

® (+) A huge investigation of the code is not necessary to isolate a meaningful
subset. Any application can be split logically in this way;

e (+) No functional modules are lost;

® (+) The results will still be correct because there is no need to remove any
thread affecting change shared data;

® (+) The complexity of the code is considerably reduced;

® (+) A high precision level (02, say) can be maintained.

Typical Examples of Removable Components, According to the
Logic of the Data

¢ Error management modules. These modules often contain a big

array of structures that are accessed through an API, but return only a
Boolean value. By removing the API code and retaining the prototype,

7-33

7 Troubleshooting Verification Problems

7-34

the automatically generated stub will be assumed to return a value in
the range [-2731, 2731-1], which includes 1 and 0. The procedure will be
considered to return all possible answers, just like reality;

¢ Buffer management for mailboxes coming from missing code.
Suppose an application reads a huge buffer of 1024 char, and then uses it
to populate 3 small arrays of data, using a very complicated algorithm
before passing it to the main module. If the buffer is excluded from the
verification and the arrays are initialized with random values instead, then
the verification of the remaining code will just be the same.

Subdivision According to Data-Flow
Consider the following example.

Module A reads variables varl, var2, var3
And produces variables vard, var3, varf

— | Module Acontaining [5 vwvard 4] Module B containing
more than one function. more than one function.
= Al — = Bl

— . " —— VAD [

-~ _-'5;__' - BE
= A3 = B3

e . e——

In this application, variables 1, 2 and 3 can vary between the following ranges:

Varl Between 0 and 10
Var2 Between 1 and 100
Var3 Between —10 and 10

Specification of Module A:

Reducing Verification Time

Module A consists of an algorithm which interpolates between varl and var2.
That algorithm uses var3 as an exponential factor, so when varl is equal to 0,
the result in var4 is also equal to 0.

As a result, var4, varb and var6 are produced with the following specifications:

Ranges var4d Between —60 and 110
varb Between 0 and 12
var6 Between 0 and 100
Properties And a set of e If var2 is equal to 0, than
properties between vard>varb5>5.
variables

e If var3 is greater than 4, than
vard<varb<12

Subdivision in accordance with data flow allows modules A and B to be
analyzed separately.

e A will use variables 1, 2 and 3 initialized respectively to [0;10], [1;100]
and [-10;10]

* B will use variables 4, 5 and 6 initialized respectively to [-60;110], [0;12]
and [-10;10]

The consequences:

® (-) A slight loss of precision on the B module verification, because now all
combinations for variables 4, 5 and 6 are considered:
= It includes all of the possible combinations.

= It also includes those that would have been restricted by the A module
verification.

For example, If the B module included the test
“If var2 is equal to 0, than var4d>varb5>5"

then the dead code on any subsequent “else” clause would not be detected.

7-35

7 Troubleshooting Verification Problems

7-36

® (+) An in depth investigation of the code is not necessary to isolate
a meaningful subset. It means that a logical split is possible for any
application, in accordance with the logic of the data

® (+) The results remain valid (because there no need to remove (say) a
thread that will change shared data)

® (+) The complexity of the code is reduced by a significant factor

¢ (+) The maximum precision level can be retained.
Typical examples of removable components:

® Error management modules. A function
has_an_error_already_occurredmight return TRUE or FALSE. Such a
module may contain a big array of structures which are accessed through
an API. The removal of the API code with the retention of the prototype
will result in the PolySpace verification producing a stub which returns
[-2731, 2731-1]. This clearly includes 1 and O (yes and no). The procedure
has_an_error_already_occurred will therefore return all possible answers,
just like the code would at execution time.

¢ Buffer management for mailboxes coming from missing code. Suppose a
large buffer of 1024 char is read, and the data is then collated into 3 small
arrays of data using a very complicated algorithm. This data is then given
to a main module for treatment. For the verification, the buffer can be
removed and the 3 arrays initialized with random values.

¢ Display modules.

Subdivide According to Real-Time Characteristics

Another way of splitting an application is to isolate files which contain only a
subset of tasks, and to analyze each subset separately.

If a verification is initiated using only a few tasks, PolySpace will lose
information regarding the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and T2 is scheduled to read it at a particular moment,
subsequent operations in T2 will be impacted by the values of x.

Reducing Verification Time

As an example, consider that T'1 can write either 10 or 12 into x and that
T2 can both write 15 into x and read the value of x. There are two ways to
achieve a sound stand-alone verification of T2.

® x could be declared as volatile in order to take into account all possible
executions. Otherwise x will take only its initial value or x variable
will remain constant, and T2s verification will be a subset of possible
execution paths. You might have precise results, but it will only include
one scenarioamong all possible states for the variable x.

® x could be initialized to the whole possible range [10;15], and then the
T2entry-point called. This is accurate if x is calibration data.

Subdivide According to Files

Simply extract a subset of files and perform a verification either:

® using entry-points, or

® Dby creating a “main” that calls randomly all functions that are not called by
any other within this subset of code.

This method may look too simple to be efficient but it can produce good results
when the aim is to find red errors and bugs in gray code.

A Decision Algorithm to Speed-Up a Verification:
Hints and Troubleshooting

This chapter suggests methods to reduce the duration of a particular
verification, while minimizing the need to compromise the launch parameters
or the precision of the results.

The size of a code sample which can be effectively analyzed can be increased by
tuning the tool be optimized for that sample. Beyond that point, subdividing

the code or choosing a lower precision level will bring better results (-O1, -O0).

Suppose that for a given set of code, the intermediate language translation
does not finish.

Step 1: standard scaling options

7-37

7 Troubleshooting Verification Problems

o CPU mmust be = 1 GHz, EAM must be = 1
Gb

o Swap files must be < 450 Mb. Swap must
be =2 x RAM

— :
o Hardware configuration

~_ OK?

——

— T
having a slow analysis can be nommal. -l e~
T " - T application size is over
o v ophion -gquick. e ——__ SOK lines?
- — 5 ines?
"-\-____--\-
o Think about splitting the =l il
- e
no
Set options e .=
.-'-"'FH--FF
-respect-fypes-in-globals e blocked in 02, O1. 007
5 --\--\-\--\-\-"'-\-_ I
-respect-types-in-fields = "o e
. e
no
‘,__,-o-"""---'- = ""--.____
— B
f 2 Al —
refer to next page: step 2 - Alias r——— .
: i VES e still blocked?
complexity —
i a—
-_\-\-\""-\._____;--"'"--FF

Step 2: alias complexity

7-38

Reducing Verification Time

Status : (See step 1)
blocked in the desired
p| ODtions -respect-types-
i 1
" -\-\-\""'-.
e Are all figures ——
. available? (1) — ves
)
R -
Stub all functionm to “pure"” \L
stub varargs functions to pure (“delete” tlus o -Ei
function calls using "#define DbgPrint (args T T
" or stub it. o~ Are varargs and e
T—__stubs pure? s
-\-\--\""-\-.______ w .
.1.’'5-‘5
e = -\--\-""‘--.
- ___.--"- ""--\.___
Launch again with “export _—" PGCPTS 5 (gaa Hﬁ"m
PET_CLOE—E_LERrEL=U in l&i‘LﬂC]liIlg H-""‘“-_ ﬁr_a]_:.f'r_‘j_g EDﬂlPlE‘TEJ? _______.--"'
command Blose: il
1-‘&5
All figures are available (next page).
Intermediate langnage translation
has completed.

A typical set of statistics is shown below. They are be found for any
application by using the “polyspace-stats -v’ command, at any point after the
intermediate language translation has been completed.

Some stats on aliases use:

7-39

7 Troubleshooting Verification Problems

Number of alias writes: 2672

Number of must-alias writes: O

Number of alias reads: O

Number of invisibles: 60

Number of global invisibles: 3808
Stats about alias writes:

biggest sets of alias writes: Variable 1 (45), Variable_ 1 (32)
procedures that write the biggest sets of aliases: procedure_f_1
(583), procedure_f 2 (369), procedure_f_ 3 (264)

You can reduce the pointers complexity by inlining the
following functions

procedure_g 1 procedure_g 2

procedure_g 3

From this point, there are three possible routes to take. In order of preference,
they are

® Reduce procedure complexity
® Reduce task complexity

® Reduce variable complexity
and then restart the verification.

Reduce procedure complexity

7-40

Reducing Verification Time

Reduce procedure complexity
The user can wse the inline option applies to some function. Which function should the user add in the —
inline option?

v v

sequence for procedure g # sequence for procedure_f =

T, T
_,-""ff HH“H.. ,-—""d-f =
- - :
e o EHH " are the procedure_f # E\“m‘x
:” write in its parameters “:} :” also in the “g” list ‘*:.
HH"‘*& : i "“"x%_& (procedure_g #)7 i
o e Qr _d_,-r""-r e f___(_,-
T _d_-d'"’f T H___,-
"'\-_,_H_H-\-‘ o "'\-___H-\-\--H___)
L _I_ ves
u—.;,—-——:__________ is < 20 lines of C code __________‘:—-- 1o
— ves
L ¥
e Ves T
m—=—_____ has no embeddad loop ———
L T
- ves
J"-)-d-
.-/
,-"-f L = =
- passes its pointer .
g parameters {*) to |
no e e AT -
ancther procedure -
‘H\““a __,--""-f
R RN Ves
+ s x T —
add the procedure in the —inline list :

i

the procedure must NOT be inlined -inline “test procedure_g_ 12 other_procedure”™

For example, does it pass its pointer parameters to another procedure?

7-41

7 Troubleshooting Verification Problems

7-42

YES NO NO
void f(int *p) void f(int q) void f(int *r)
{ {
f2(p) *r =12
} }

Reduce task complexity

If 2 or more tasks are present, and particularly if there are more than 10000
alias reads:

Set the -lightweight-thread-model option, which will

® Reduce task complexity, and

® Reduce verification time
There are some downsides:

¢ [t causes more oranges and a slight loss of precision on reads of shared
variables through pointers

¢ The dictionary may omit some read/write accesses.

Reduce variable complexity

If the types are complex | Set the -k-limiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain
precision

If there are large arrays | Setting the -no-fold option can solve the problem.

What are the Benefits of these Methods?
It may be desirable to split the code

® To reduce the verification time for a particular precision mode

* To reduce the number of oranges (see next two sections for details)

Reducing Verification Time

The problems subdivision may bring are that

® QOrange checks can result from a lack of information regarding the
relationship between modules, tasks or variables

® Orange checks can result from using too wide a range of values for stubbed
functions

When the Application is Incomplete

When the code consists of a small subset of a larger project, a lot of procedures
will be automatically stubbed. This is done according to the specification

or prototype of the missing functions, and therefore PolySpace verification
assumes that all possible values for the parameter type can be returned.

Consider two 32 bit integers “a” and “b”, which are initialized with their full

range due to missing functions. Here, a*b would cause an overflow, because

“a” and “b” can be equal to 2231. The number of incidences of these “data set
issue” can be reduced by precise stubbing.

Now consider a procedure f which modifies its input parameters “a” and “b”,
both of which are passed by reference. Suppose that “a” might be modified
to any value between 0 and 10, and “b” to any value between -10 and 10.
In an automatically stubbed function, the combination a=10 and b=10 is
possible even though it might not be possible with the real function. This
can introduce orange checks in a code snippet such as 1/(a*b - 100), where
the division would be

® So, even where precise stubbing is used, verifying a small piece of
application might introduce extra orange checks. However, the net effect
from reducing the complexity will be to reduce the total number of orange
checks.

¢ When using the default stubbing, the increase in the number of orange
checks as the result of this phenomenon tends to be more pronounced.

Considering the Effects of Application Code Size

PolySpace can make approximations when computing the possible values
of the variables, at any point in the program. Such an approximation will
always use a superset of the actual possible values.

7-43

7 Troubleshooting Verification Problems

7-44

For instance, in a relatively small application, PolySpace might retain very
detailed information about the data at a particular point in the code, so that
for example the variable VAR can take the values {-2;1;2;10;15; 16;
17 ; 25 }. If VAR is used to divide, the division is green (because O is not a
possible value).

If the program being analyzed is large, PolySpace would simplify the internal
data representation by using a less precise approximation, such as [-2 ; 2] U
{10} U [15; 17] U {25} . Here, the same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the
verification, PolySpace might further simplify the VAR range to (say) [-2 ; 20].

This phenomenon leads to the increase or the number of orange warnings
when the size of the program becomes large.

Note The amount of simplification applied to the data representations also
depends on the required precision level (00, 02), PolySpace PolySpace will
adjust the level of simplification, for example:

® .00 — shorter computation time,

® .02 — less orange warnings.

® .03 — less orange warnings and bigger computation time.

Reviewing Verification
Results

e “Before You Review PolySpace Results” on page 8-2

® “Opening Verification Results” on page 8-8

* “Reviewing Results in Assistant Mode” on page 8-17

* “Reviewing Results in Expert Mode” on page 8-25

® “Generating Reports of Verification Results” on page 8-37
e “Using PolySpace Results” on page 8-41

8 Reviewing Verification Results

8-2

Before You Review PolySpace Results

In this section...

“Overview: Understanding PolySpace Results” on page 8-2
“Why Gray Follows Red and Green Follows Orange” on page 8-3
“What is the Message and What does it Mean?” on page 8-4
“What is the C Explanation?” on page 8-5

Overview: Understanding PolySpace Results

PolySpace software presents verification results as colored entries in the
source code. There are four main colors in the results:

¢ Red - Indicates code that always has an error (errors occur every time
the code is executed).

¢ Gray — Indicates unreachable code (dead code).
¢ Orange — Indicates unproven code (code might have a runtime error).

® Green — Indicates code that never has a runtime error (safe code).

This section explains how to analyze these colors. There are four rules to
remember:

¢ An instruction is verified only if no runtime error was detected in the
previous instruction.

® The verification assumes that each runtime error causes a “core dump.”
The corresponding instruction is considered to have stopped, even if the
actual run time execution of the code might not stop. This means that
red checks are always followed by gray checks, and orange checks only
propagate the green parts through to subsequent checks.

® Always focus on the message given by the verification, and do not jump to
false conclusions. You must understand the color of a check step by step,
until you find the root cause of the problem.

¢ Always determine an explanation by examining the actual code. Do not
focus on what the code is supposed to do.

Before You Review PolySpace® Results

Why Gray Follows Red and Green Follows Orange

This section explains why gray checks follow red checks, and how green
checks are propagated out of ones.

In the example below, consider why:

¢ the gray checks follow the red in the red function.

® there are green checks relating to the array.

void red(void) extern int Read_An_Input(void);
{ void propagate(void)
int x; {
x =1/ x; int X;
X = x + 1; int y[100];
} X = Read_An_Input();
y[X] =05 //
y[X] = 0;
}

Consider each line of code for the red function:

® When PolySpace divides by X, X has not been initialized. Therefore the
corresponding check (Non Initialized Variable) on X is red.

® As a result, all possible execution paths are stopped, because they
all produce an RTE. Therefore the subsequent instructions are gray
(unreachable code).

Now, consider each line of code for the propagate function:

¢ Xis assigned the return value of Read_An_Input. After this assignment,
X = [-2731, 2731-1].

e At the first array access, an “out of bounds” error is possible since X can
equal -3 as well as 3.

® Subsequently, all conditions leading to an RTE are assumed to have been
truncated — they are no longer considered in the verification. Therefore,
on the following line, all executions in which X = [-2731, -1] and [100,
2731-1] are stopped.

8 Reviewing Verification Results

* Consequently, at the next instruction, X = [0, 99].

e Therefore, at the second array access, the check is green because X = [0, 99].

Summary
Green checks can be propagated out of checks.

Note When writing manual stubs, you can use this property of PolySpace
software to restrict data input values. For more information on how to assign
ranges of variables, see “Reduce the cloud of points” on page 9-16.

What is the Message and What does it Mean?

PolySpace software numbers checks in the same order it followed during
execution of the code.

Consider the instruction x++;
PolySpace first checks for a potential NIV (Non Initialized Variable) for x, and
then checks the potential OVFL (overflow). This mimics the actual execution

sequence.

Understanding these sequences can help you understand the message
presented by PolySpace, and what that message implies.

Consider an orange NIV on x in the test:
if (x > 101);

You might conclude that the verification has not kept track of the value of x.
However, consider the context in which the check is made:

extern int read_an_input(void);

void main(void)

{
int x;
if (read_an_input()) x = 100;

Before You Review PolySpace® Results

if (x > 101) //
{ x++; } // gray code
}

Explanation

You can see the category of each check by clicking on it in the Viewer. When
you examine an orange check, any value of a variable that would result in a
runtime error (RTE) is not considered further. However, as this example NIV
(Non Initialized Variable) shows, any value that does not cause an RTE is
verified on subsequent lines.

The correct interpretation of this verification result is that if x has been
initialized, the only possible value for it is 100. Therefore, x can never be
both initialized and greater than 101, so the rest of the code is gray. This
conclusion may be different from what you first suspect.

Summary

In summary:

® "(x>100)" does NOT mean that PolySpace doesn’t know anything about x.

® "(x >100)" DOES means that PolySpace doesn’t know whether X has
been initialized.

The two rules to remember when reviewing results are:

® Focus on the message given by PolySpace software.

¢ Do not jump to conclusions.

What is the C Explanation?

Verification results depend entirely on the code that was verified. When
interpreting the results, do not consider:

® Any physical action from the environment in which the code is intended to
operate.

® Any configuration that is not part of the verification.

® Any reason other than the code itself.

8-5

8 Reviewing Verification Results

Remember, the only thing the verification considers is the C code submitted
to it.

Consider the example below, paying particular attention to the dead (gray)
code following the "if" statement:

extern int read_an_input(void);

void main(void)

{

int x;

int y[100];

X = read_an_input();

ylx 1 =20; //

yix-1]1 = (1 / X) + X 3

if (x == 0)

y[x] = 1; // gray code on this line

}

You can see that:

® The line containing the access to the y array is unreachable.
® Therefore, the test to assess whether x = 0 is always false.

¢ The initial conclusion is that "the test is always false." You might
conclude that this results from input data that is not equal to 0. However,
Read_An_Input can be any value in the full integer range, so this is not the
correct explanation.

Instead, consider the execution path leading to the gray code:

® The orange check on the array access (y[x]) truncates any execution path
leading to a runtime error, meaning that subsequent lines will be dealing
with only x = [0, 99]

® The orange check on the division also truncates all execution paths that
lead to a runtime error, so all instances where x = 0 are also stopped.
Therefore, for the code execution path after the orange division sign, x
= [1; 99].

8-6

Before You Review PolySpace® Results

® Thus, x 1s never equal to 0 at this line. Therefore, the array access is
green (y (x — 1).

Summary

In this example, all the results are located in the same procedure. However,
by using the call tree, you can follow the same process even if an orange check
results from a procedure at the end of a long call sequence. Follow the "called
by" call tree, and concentrate on explaining the issues by reference to
the code alone!

8-7

8 Reviewing Verification Results

Opening Verification Results

In this section...

“Downloading Results from Server to Client” on page 8-8
“Opening Verification Results” on page 8-11

“Exploring the Viewer Window” on page 8-11

“Selecting Viewer Mode” on page 8-15

“Setting Character Encoding Preferences” on page 8-15

Downloading Results from Server to Client

When you run a verification on a PolySpace server, the results are stored on
the server. Before you can view your results, you must download the results
file from the server to the client.

Note If you download results before the verification completes, you get
partial results and the verification continues.

To download verification results to your client system:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

Opening Verification Results

i Polyspace Queue Manager Interface

Cperations Help

D | Author Application Resultz directon CPU| Statuz | Date | Languw

wour_name Example_Project C:Apolyspace_project’, ange running 008, "

2 Right-click the job you want to view, then select Download Results from
the context menu.

Note To remove the job from the queue after downloading your results,
select Download Results And Remove From Queue from the context
menu.

The Browse For Folder dialog box appears.

8-9

8 Reviewing Verification Results

8-10

Directory where ko store the results

123 Perl ;I
=) PolySpace
=l 153 polyspace_project
I includes J
I resulks
I sources
I3 PalySpace_Results -
Folder: I results

Make Mew Faolder | (o] 4 I Cancel |

4

3 Select the folder into which you want to download results.
4 Click OK to download the results and close the dialog box.

When the download completes, a dialog box appears asking if you want to
open the PolySpace Viewer.

Queston X

Downlaad completed, Da you wank ko open PalvSpace Yiewer 7

Yes Mo |

5 Click Yes to open the results.

Once you have downloaded results, they remain on the client, and you can
review them at any time using the PolySpace Viewer.

Opening Verification Results

Opening Verification Results
You use the PolySpace Viewer to review the results of your verification.

Note You can also open the Viewer from the Launcher by clicking the Viewer
icon in the Launcher toolbar with or without an open project.

To open the verification results:

1 Double-click the PolySpace Viewer icon:

2 Select File > Open.

3 In the Please select a file dialog box, select the results file you want
to view.

4 Click the Open button.

The results appear in the Viewer window.
Exploring the Viewer Window
® “Overview” on page 8-11

® “Procedural Entities View” on page 8-13

Overview
The PolySpace Viewer looks like:

8-11

8 Reviewing Verification Results

Coding review progress view Selected check view

-Poly'Space Yiewer - C:\polysglace_projectiresults'RTE_px_02_Example_Project_LAS

-loix]

Fil= Edit ‘Windows Help
£
J o B = m| <8 & 9 i J N-SHR: QJ & ﬂﬁ“uwefined - G assistant
JIRauiewadfilteroff vl| xX |2 e ||onn| zZov |,gg§, gﬁ?tllnp |COR ow | IR SHF |°{‘r{g,|ulp TLORT AT NTC KNTG
Coding review progress Court Pr... 4 Mo check currently selected
Mo check selected hia hia A|
b reviesved I nb to reviesy (nfa) iz =]
J|oftware reliabiity indicator hia nia LI [} a'

Procedural entities

4
p [variables Yie I=l|{EEICall Tree Yie al

4
L
Example_Project

B polyspace_stdst

|$—4pol\rspace7main.c

Iﬁ—examp\e.c

E—_polyspace_stdstubs.c

Miritten by 4 & Both
Read by 3

i Called by 4
iritten by task 1|

" calls »
Read by task 113

[~ complete

Potentially Written by

[¥ Update on selection
Potertially Read by

K| [}
B [. =10l x|
4 | |
Procedural Variables Source code Call tree
entities view view view view

The appearance of the Viewer toolbar depends on the Viewer mode. By
default, the expert mode toolbar displays.

B E @ 1| e & T forsemesz] 65 asin|

NIU FLOAT
Z0N 153l ouFL COR. POk IRY SME | other | WIF qupp ASRT WTC E-NTC

NI ZCAL I oF

In both expert mode and assistant mode, the Viewer window has six sections
below the toolbar. Each section provides a different view of the results. The
following table describes these views.

8-12

Opening Verification Results

This view...

Displays...

Procedural entities view (lower left)

List of the diagnostics (checks) for
each file and function in the project

Source code view (lower right)

Source code for a selected check in
the procedural entities view

Coding review progress view (upper
left)

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check view (upper right)

Details about the selected check

Variables view

Information about the global
variables declared in the source code

Note The file that you use in
this tutorial does not have global
variables.

Call tree view

Tree structure of function calls

You can resize or hide any of these sections.

Procedural Entities View

The procedural entities view, in the lower-left part of the Viewer window,
displays a table with information about the diagnostics for each file in the
project. The procedural entities view is also called the RTE (run-time error)
view. The procedural entities view looks like:

Procedural entities

4 Ecample_Project

]

J:p-—_puh,rspace_main.c 1 a0 pal
le-—example K 4 |7 b 1 82 jexam
JII——_|:u:-|7n,r5|:uace_stu:lstul:us K 1 a0 pol

8-13

8 Reviewing Verification Results

8-14

The file example.c is red because its has a run-time error. PolySpace software
assigns a file the color of the most severe error found in that file. The first
column of the table is the procedural entity (the file or function). The following
table describes some of the other columns in the procedural entities view.

Column Indicates

Heading

| 7 I Number of red checks (for operations where an error always
- occurs)

Number of gray checks (for unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (for operations where an error
never occurs)

ESRERES

ﬁ Total number of red, green, and gray checks (an indication
of the level of proof)

Tip If you see three dots in place of a heading, J, resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

Note You can select which columns appear in the procedural entities view
by editing the preferences. To learn how to add a Reviewed column, see
“Making the Reviewed Column Visible” on page 8-30.

What you select in the procedural entities view determines what displays in
the other views. In the examples in this chapter, you learn how to use the
views and how they interact.

Opening Verification Results

Selecting Viewer Mode

You can review verification results in expert mode or assistant mode:

¢ In expert mode, you decide how you review the results.

¢ In assistant mode, PolySpace software guides you through the results.

You switch from one mode to the other by clicking the appropriate button
in the Viewer toolbar:

G pssistant

{Jﬁ.‘ Expert

Setting Character Encoding Preferences

If the source files you want to verify were created on an operating system that
uses different character encoding than your current system (for example,
when viewing files containing Japanese characters), you will receive an error
message when you view the source file or run certain macros.

The Character encoding option allows you to view source files created on an
operating system that uses different character encoding than your current
system.

To set the character encoding for a source file:
1 Select Edit > Preferences in the Viewer.

The Preferences PolySpace Viewer dialog box appears.
2 Select the Character encoding tab.

The Character encoding tab appears.

8-15

8 Reviewing Verification Results

5 PolySpace View

Tools Menu || Takle options || Toolbars options || Miscellaneous | Assistant configuration |; Character encodir
Specifies the character encoding used by the operating system on which the source file was created.
Thiz allowws you to view source files created on an operating system that uses different character encoding than the current system.
*ou can choose your character encoding with a double click on the wanted one in the following list.

Wiethamese (Aindows) eindows-1258)

16-bits UCS Transformation Format, byte order identified by an optional byte-order mark (UTF-16)
16-bits Unicode (or UCS) Transformation Format, little-endian byte order [x-LUTF-16LE-BCM)
16-hits Unicode Transformation Format, big-endian byte order [UTF-16EE)
16-hits Unicode Transformation Format, little-endian byte order [UTF-16LE)
G-hits UCS Transformation Format [UTF-5)
American Standard Code for Information Interchange [US-85C0)
Arabic (Aindows) [wwincdovys-1256)
Baltic: (Windowes) [wvindowys-1257)
Chinese (Simplified) [GEK)
Chinese (Simplified) PRC standard (GEG0E0)
Chinese (Simplified), EUC encoding, GB2312 [x-EC-CH)
Chinese (Traditional) [Bigs)
Chinese (Traditional) (Windows) [x-wyincowes-9500
Chinese (Traditional) with Hong Kong extensions [Bigs-HKECE)
Chinese (Traditional) with Hong Kong extensions (Aindovws) [x-MZ950-HKSCE)
Chinese (Tracltional), EUC encoding, CMS11643 (Plane 1-3) [x-ELIC-TVw)
Cyrillic for QAIndowes) [wvindowys-12517
Eastern European (Mindows) [wwinclovys-1250)
Greek (Windows) [wvindowy s-1253)
Hehrew (Windows) [weincdoves-1255)
Indic scripts [x-1SCN91)
Japanese WAndows) [wvincdonnes-31f)
Japanese with halfwicdth Katakana (Windows 150 2022) Ce-windows-50221)
[Reset to default character encoding: Japanese, Shift-JIS (Shift_JIS)]
Hote: “'ou must restart the Viewer to use the new character encoding settings.

’ Ok] ’ Apply] ’ Cancel]

3 Select the character encoding used by the operating system on which the
source file was created.

4 Click OK.

Note You must close and restart the viewer to use the new character
encoding settings.

5 Close and restart the Viewer.

8-16

Reviewing Results in Assistant Mode

Reviewing Results in Assistant Mode

In this section...
“What Is Assistant Mode?” on page 8-17
“Switching to Assistant Mode” on page 8-17

“Selecting the Methodology and Criterion Level” on page 8-18
“Exploring Methodology for C” on page 8-19

“Defining a Custom Methodology” on page 8-21

“Reviewing Checks” on page 8-22

What Is Assistant Mode?

In assistant mode, PolySpace software chooses the checks for you to review
and the order in which you review them. PolySpace software presents checks
to you in this order:

1 All red checks
2 All blocks of gray checks (the first check in each unreachable function)

3 Orange checks according to the selected methodology and criterion level

For more information about methodologies and criterion levels, see “Selecting
the Methodology and Criterion Level” on page 8-18.

Switching to Assistant Mode

If the Viewer is in assistant mode, the mode toggle button displays Expert. If
the Viewer is in expert mode, the mode toggle button displays Assistant. To
switch from expert mode to assistant mode:

. ‘ G pssistant
e (Click the Viewer mode button

The Viewer window toolbar displays controls specific to assistant mode.

8-17

8 Reviewing Verification Results

8-18

JIMethndnlngy for Model Based Designedj r— |_ Skip gray chechks 4 <§ '@}' §> [
1 2 a

The controls for assistant mode include:

® A menu for selecting the review methodology for orange checks
e A slider for selecting the criterion level within that methodology
¢ A check box for skipping gray checks

® Arrows for navigating through the reviews

Selecting the Methodology and Criterion Level

A methodology is a named configuration set that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology has
three criterion levels. Each level specifies the number of orange checks for a
given category. The levels correspond to different development phases that
have different review requirements. To select a methodology and level:

1 Select Methodology for C from the methodology menu.

ethodalogy for C LI
Methodaology for Ada

Methodaology for ©
Methodaology for C++
Methodalogy for Model Based Designed

2 Select the appropriate level on the level slider.

J—

1 2 3

For the configuration Methodology for C, the three levels are:

Level Description

1 Fresh code

2 Unit tested code
3 Code Review

Reviewing Results in Assistant Mode

These three levels correspond to phases of the development process.

Exploring Methodology for C

A methodology defines the number of orange checks that you review in
assistant mode. Each methodology has three criterion levels that specify
increasing levels of review. These levels correspond to different development
phases that have different review requirements.

Note You cannot change the parameters defined in the Methodology for C,
but you can create your own custom methodologies.

To examine the configuration for Methodology for C:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box appears.
2 Select the Assistant configuration tab.

The configuration for Methodology for C appears.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

8-19

8 Reviewing Verification Results

8-20

ameous | Assistant configuration i

~Mumber of checks to review:

Criterion 1 Criterion 2 Criterion 3
CComman
il 3 20 AL
P 10 S0 AL
S-O%FL |10 =0 AL
CoR 10 10
PChay = 10 AL
Pl l 10
F-oFL 2 10 20
ASRT 5 20
0 & CH+ only
CE&| 10 20 AL
SHF 3 10 AL
P 10 20
P 10 20
i anly
IR = 20 AL
4+ anly 1

For example, the table specifies that you review five orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the Viewer toolbar (in assistant mode).

Reviewing Results in Assistant Mode

Configuration set

hethodalogy for C LI

Review threzhaold criterion

Criterian 1 Fresh code
Criterion 2 it tested
Criterion 3 Code reviesny

For the configuration Methodology for C, the criterion names are:

Criterion Name in the Tooltip
1 Fresh code

2 Unit tested

3 Code Review

These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Defining a Custom Methodology

A methodology defines the number of orange checks that you review in
assistant mode. You cannot change the predefined methodologies, such as
Methodology for C, but you can define your own methodology.

To define a custom methodology:
1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box appears.
2 Select the Assistant configuration tab.

3 In the Configuration set drop-down menu, select Add a set.

8-21

8 Reviewing Verification Results

8-22

—Configuration set

Acld 2 set =

hethodalogy for Ads

methodalogy for C

__fhﬂethu:udculng':.f for C++

Methodology for Model Based Design

The Create a new set dialog box appears.
i

@ Enter the name of the sek wou are creating.
Enter I Zancel |

4 Enter a name for the new configuration set, then click Enter.
5 Enter the number checks to review for each type, and each criterion level.

6 Click OK to save the methodology and close the dialog box.

Reviewing Checks
In assistant mode, you review checks in the order in which PolySpace software
presents them:

1 All reds
2 All blocks of gray checks (the first check in each unreachable function)

Note You can skip gray checks by selecting the Skip gray checks check
box in the toolbar.

Reviewing Results in Assistant Mode

3 Orange checks according to the selected methodology and criterion level
To navigate through these checks:
b3

® The procedural entities view (lower left), expands to show the current
check.

1 Click the forward arrow

Procedural entities

lﬁ Mew_Project
[H—example.c
F—Pointer_adthmetic ()
B-RTE ()
B

i——Hecursil:-n_caller [

i——Square_Hu:uut]

® The source code view (lower right) displays the source code for this check.

® The current check view (upper right) displays information about this
check.

Note You can display the calling sequence and track review progress. See
“Reviewing Results in Expert Mode” on page 8-25.

2 Review the current check.

3 Continue to click the forward arrow until you have gone through all of
the checks.

After the last check, a dialog box appears asking if you want to start again
from the first check.

8-23

8 Reviewing Verification Results

Wrapping search x|
@ End of the set of checks under review,
Do wou want to start again From the First check?

o |

4 Click No.

8-24

Reviewing Results in Expert Mode

Reviewing Results in Expert Mode

In this section...
“What Is Expert Mode?” on page 8-25

“Switching to Expert Mode” on page 8-25

“Selecting a Check to Review” on page 8-25
“Displaying the Calling Sequence” on page 8-27
“Tracking Review Progress” on page 8-28

“Making the Reviewed Column Visible” on page 8-30
“Filtering Checks” on page 8-33

“Types of Filters” on page 8-33

“Creating a Custom Filter” on page 8-35

What Is Expert Mode?

In expert mode, you can see all checks from the verification in the PolySpace
Viewer. You decide which checks to review and in what order to review them.

Switching to Expert Mode
If the Viewer is in expert mode, the mode toggle button displays Assistant. If

the Viewer is in assistant mode, the mode toggle button displays Expert. To
switch from assistant to expert mode:
® (Click the Viewer mode button:

{J§_'.‘ Expert

The Viewer window toolbar displays buttons and menus specific to expert
mode.

Selecting a Check to Review

To review a check in expert mode:

8-25

8 Reviewing Verification Results

1 In the procedural entities section of the window, expand any file containing
checks.

2 Expand the procedure containing the check you want to review.

A color-coded list of the checks performed on the procedure appears:

Rl oer_sctmetic ()
e W0AD
L 0AE
e OWFL4
-~ LUNFLA
— i 1oP.11
3 OWFL4
L3 UMFLAS
% UHFR.16
- W0AIT
L UMFLIZ
e OWFLZS
L UHFLZ4

Each item in the list of checks has an acronym that identifies the type

of check and a number. For example, in IDP.11, IDP stands for Illegal
Dereferenced Pointer. For more information about different types of checks,
see “Check Descriptions”in the PolySpace Products for C Reference.

3 Click the check you want to review.

The source code view displays the section of source code where this error
occurs.

8-26

Reviewing Results in Expert Mode

9z
93
94
95
96
a7
a3
99
loa
101
oz
103
104
105
log
107
103
log
110

= example.c

int i, ¥p = array;

for{i = 0; i < 100; i++)

if{get bus= =status=()] > 0)
{

if(get oil pressure(] > 0]

{
*_p = L /¥ ut of bounds */

4 Click the colored check in the code.

An message box appears describing the error.

Displaying the Calling Sequence
You can display the calling sequence that leads to the code associated with
a check. To see the calling sequence for a check:

1 Expand the procedure containing the check you want to review.

2 Click the check you want to review.

3 Click the call graph button in the toolbar.

&

8-27

8 Reviewing Verification Results

A window displays the call graph.

HErrur call graph for example.Pointer_Arithmetic.IDP.11 - PolySpace ¥iewe

Jpolyspace_main.c example.c exanple.c exanple.c

nain RTE

Pointer_Arithmetic IDP.11
The call graph displays the code associated with the check.

Tracking Review Progress

You can keep track of the checks that you have reviewed by marking them. To
mark that you have reviewed a check:

1 Expand the procedure containing the check you want to review.

2 Click the check you want to review.

A table with statistics about the review progress for that category and
severity of error appear in the upper-left part of the window.

8-28

Reviewing Results in Expert Mode

I Coding revievy progress Count Progress

Inb IDP revieweed Jnkb IDP to reviewy (Red) iyl 1]

linb reviewved 1 nb ta review [Fed) 0r4 1]
=oftweare reliabilty indicator 93115 an

The Count column displays a ratio and the Progress column displays the
equivalent percentage. The first row displays the ratio of reviewed checks
to total checks having the color and category of the current check. In this
example, it displays the ratio of reviewed red IDP checks to total red IDP

errors in the project.

The second row displays the ratio of reviewed checks to total checks having
the color of the current check. In this example, this is the ratio of red errors
reviewed to total red errors in the project. The third row displays the ratio
of the number of green checks to the total number of checks, providing an

indicator of the reliability of the software.

Information about the current check appears in the upper-right part of

the Viewer window.

example.c ! Pointer _Arithimetic §line 104 Fcolumn 10

= *po= 5; /% Qut of bounds */

=

rror @ pointer is outside itz bounds

3 Enter a comment in the comment box.

4 Select the check box to indicate that you have reviewed this check.

The Coding review progress part of the window updates the ratios of

errors reviewed to total errors.

]

8-29

8 Reviewing Verification Results

8-30

I Coding reviesy progress Count Progress

Inb IDP reviensed !k IDP to reviewy (Red) il 100
Inb reviewed fnb to revieww (Red) 104 25
ISDﬂware relisbility indicetor 93115 a0

Making the Reviewed Column Visible

You can change the PolySpace Viewer preferences so that the procedural
entities part of the window displays a Reviewed column.

1 Select Edit > Preferences.

2 Select the Table options tab.

3 Under Display columns in RTE view, select the Reviewed check box.

Now the Table options tab looks like:

Reviewing Results in Expert Mode

HPrEferences PolySpace Yiewer

Tools Wenu Takle options | Toolbars Dptiu:unsl hizcellansous

~Dizplay columnz in BTE wiew

v Gray

v Qrange

v Green

IV Lire

v Calurnt

¥ Tatal Selectivity

¥ Detailz

|- Camments

~Dizplay columns ariable

[¥ M read

[+ Mo write

v Wiiting Tasks
v Reading Tasks
[+ Protection

| Uzage

¥ Line

I+ Colurn

[File

v Detailed Type

v walues

4 Click OK to apply the preference and close the dialog.

A column of check boxes appears in the Procedural entities view.

8-31

8 Reviewing Verification Results

8-32

Procedural ertities | Line % | Detailz | Reviewed
Iﬁ Ezample_Project | a2 -
[#—__palyspace_main.c 1 0 [paby... |-
[H—example.c i 1 82 xampl... r
B |37 |12 |40 exampl.. -
[H—Men_Infinite_Loop 4 G 11 100 xampl... |-
[H—Puainter_Arthmetic [b o] 12 | 90 exampl... |_
| a0 04 |8 r
" WA o4 |22 r
— OWF L4 1 94 |23 [+ o ... r
" LHFLS 1 a4 |23 [+] und... |_
—+ 104 |10 | pointer .| [+
—3 OwFLi4 s |11 [+] o |_
—3 UMHFLAS g (11 [+] und... |_
3 UNR.16 10g |1 r
— W07 1z | 2 r
- LINFL.ZZ 1 114 [16 [Flund... |_
— % 14 |18 Flove.| [

Tip If you do not see this column, resize Procedural entities so that you see

the column. Resize the column to see the Reviewed label.

Note Selecting a check box in the Reviewed column automatically:

® Selects the check box for that check in the current check view (upper-right

part of the window).

¢ Updates the counts in the coding review progress view (upper-left part
of the window).

Reviewing Results in Expert Mode

Filtering Checks

You can filter the checks that you see in the Viewer so that you can focus
on certain types of checks. PolySpace software provides three predefined
composite filters, a custom composite filter, and several individual filters.

The default filter is User def.

To filter checks, select a filter from the filter menu.

User def "I

Filter all
Alpha

User def

Beta
Zamma
Undefined

Types of Filters

There are three types of filters:

¢ “Individual Filters” on page 8-33
* “Composite Filters” on page 8-34
¢ “Custom Filters” on page 8-34

Individual Filters

You can use an individual filter to display or hide a given check category,
such as VOA. When a filter is enabled, that check category does not display.
For example, when the VOA filter is enabled, VOA checks do not display.
When the filter is disabled, that check category displays. For example, when
the VOA filter is disabled, VOA checks display. You can also filter by check
color. To enable or disable an individual filter, click the toggle button for that
filter on the toolbar.

8-33

8 Reviewing Verification Results

Tip The tooltip for a filter button tells you what filter the button is for and
whether the filter is enabled or disabled.

Note When you filter a check category, some red checks with that category
will still display.

Composite Filters

Composite filters combine individual filters, allowing you to display or hide
groups of checks.

Use this filter... To...

Alpha Display all checks

Beta Hide NIV, NIVL, NIP, Scalar OVFL,
and Float OVFL checks

Gamma Display red and gray checks

User def Hide checks as defined in a custom

filter that you can modify

Custom Filters

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def and is the default composite filter. By
default, the custom filter hides the OBAI, NIV local, IDP, COR, IRV, NIV
other, NIP, and NTL checks as shown in the following figure.

W E [CALLs -~ .
I H-ZHR ':x 1_ Uzer def x-{>.." Pesistant
HILY ECAL HIL FLOAT
OBAlI Z0OuU local OuFL IOP COR oW IRL SHWF other I NIF QUFL AZRT NTC E-NTC I MWTL

To modify the custom filter, see “Creating a Custom Filter” on page 8-35.

8-34

Reviewing Results in Expert Mode

Creating a Custom Filter

To modify the custom filter:

2 Select Edit > Custom filters.

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def.

1 Select User def from the composite filters menu.

The Custom filter setup dialog box appears.

ntustom filter setup - PolySpace Yiewer

Select the checks or colors ta hide when the custam filter is set

Check Fitters

I Dt

Index Checks:

™ Zero Division Checks

[+ Mon-Initislized Local Vatishle Checks

™ Scalar Overflow Checks

v llegal Dereferenced Pointer Checks

[V Correctness Condilion Checks

[Power must be positive Checks

IV Initialized Returned value Checks

I~ Shift Amournt out of Bounds or Left Operand of Left Shift Checks
[+ Mon-Initislized Yatiable Checks

¥ Mon-Initislized Poirter Checks

I Float Overflow Checks

[User Assertion Checks

™ Unknawsn Non-Tertination of Call Checks
™ Hnown Non-Termination of Call Checks
¥ Mon-Termination of Loop Checks

[Unreachakle Code Checks

I~ walug On Agsigned (only displayed, not courted)

Ok |

Colar Fiters “ariable Type Fiters
I~ Gray Checks [~ Mon-Shared Varishles
r Crange Checks
[Green Checks
I~ Errors in non executable procedures

r Crange not containing additional information

Float [Scalar Fitters

I Flost Checks

I Scalar Checks

toohs oo |

3 Clear the filters for the checks that you want to display. For example, if you

clear the Out of Bound Array Index Checks box, these checks display.

8-35

8 Reviewing Verification Results

Note You do not have to change any of the selections for this tutorial.

4 Select the filters for the checks that you do not want to display.
5 Click OK to apply the changes and close the dialog box.

PolySpace software saves the custom filter definition in the Viewer

preferences.

8-36

Generating Reports of Verification Results

Generating Reports of Verification Results
You can generate a Microsoft® Excel® report of the verification results.
To generate an Excel report of your verification results:

1 Navigate to the PolySpace-Doc folder in your results directory. For
example:polypace _project\results\PolySpace-Doc.

The directory should have the following files:

Example Project_Call Tree.txt
Example_Project_RTE_View.txt

Example Project_Variable_View.txt
Example_Project-NON-SCALAR-TABLE-APPENDIX.ps
PolySpace_Macros.xls

The first three files correspond to the call tree, RTE, and variable views
in the PolySpace Viewer window.

2 Open the macros file PolySpace Macros.x1s.
A security warning dialog appears.
3 Click Enable Macros.

A spreadsheet appears. The top part of the spreadsheet looks like:

8-37

8 Reviewing Verification Results

8-38

Apply Filkers?
& Mo filters

" Beta filters

Generate checks by file?

& yag

“ no

Hal n | Yse this button to create the complete synthesis in one file.
=elect the RTE expoart view and a file in which to save results.
If the other views are in the same directory as the RTE wiew
then they will automatically be incorporated into the same file.

Generate Poly=Space Results Synthesis

Hel n

4 Specify the report options you want, then click Generate PolySpace

Results Synthesis.

The synthesis report combines the RTE, call tree, and variables views into

one report.

The Where is the PolySpace RTE View text file dialog box appears.

5 In Look in, navigate to the PolySpace-Doc folder in your results directory.
For example:polypace project\results\PolySpace-Doc.

6 Select Project RTE View.txt.

7 Click Open to close the dialog box.

The Where should I save the analysis file? dialog box appears.

8 Keep the default file name and file type.

9 Click Save to close the dialog box and start the report generation.

Microsoft Excel opens with the spreadsheet that you generated. This

spreadsheet has several worksheets:

Generating Reports of Verification Results

:I Example_Project-Synthesis.xls

}||

Call Graph of ll tree

all tree
__poly=space_main.main
| - » ezample.RTE
| | - » example.Close_To Zero
||] » pet_stubs 0. random_ float
||] » pst_stubs 0. random_ float
|] » pst_stubs 0. .random_int
| | > exanple. Hon_Infinite Loop
| | - » ezxample.Pointer Arithmetic
| 1 | » pet_=stubs_0.g=et_bus =status
||] » exanple.get_oil pressure
||] » pst_stubs 0.get_bus status
| | - » example.Recursion_caller
| 1 | » pet_=stub=s_0.random_int
| | | - » ezample.Recursion
| | | | =% RecursiwveCall to exanple. Recursion:
||] » pet_stubs 0. .randomn_int
| | | - » example.Recursion

Already displaved abowve

» p=t_=tub=s 0.random_int
» example . Square_FRoot
» pet_=tub=s 0.random_float
— » example.Sguare_Root_conwv

» TeEtern.sgrt
» example . Unreachable Code
» pet_=tub=s 0.random_int

| » pet_stub=s_0.random_int
b [Application Call Tree / Shared Globals 4 Global Data Dictionary £ Checks by file

|
|
|] » Textern.cos
|
|

PR TR Y AU Y S U Y Y) R R Ry ey PR PR P) Y g

10 Select the Check Synthesis tab to view the worksheet showing statistics
by check category:

8-39

8 Reviewing Verification Results

B Example_Project-Synthesis.xls

&, B C|ID|E|F

1 RTE Statistics

2 | Check category Check detail R O Gy
3 |0BAI Out of Baunds Array Index 000
4 MWL Uninitialized Local Variable 012
5 |IDF llegal Dereference of Pointer (1 |1 |0
B [MIP Lninitialized Paointer 0o
7 M Lninitialized Yariable 0o
a8 |1 Initialized Yalue Returned 0o
g |COR Other Correctness Conditions 0 0 0
10 |ASET User Asgertion Failure 010
11 | PO FPower Must Be Positive 000
12 [Z0% Division by Zero 010
13 | SHF Shift Amount YYithin Bounds 0o
14 |CWFL Creerflow o2 \3
15 |LINFL Lnderfl o ono|3
16 |LIOWFL Underflow or Cverflow 030
17 |EXCP Arithrmetic Exceptions 000
18 |MTC Mon Termination of Call 300
19 |k-NTC Known Mon Termination of Call /0 0 0
20 |MTL Mon Termination of Loaop 000
21 |LUMRE Unreachable Code 0o
22 | LIMP Uncalled Procedure 0o
23 |IPT Inspection Point 000
24 |OTH other checks 0o
25 |ERC Exception handling 0on

8-40

Using PolySpace® Results

Using PolySpace Results

In this section...

“Review Runtime Errors: Fix Red Errors” on page 8-41
“Review Dead Code Checks: Why Gray Code is Interesting” on page 8-42

“Selective Orange Review: Finding the Maximum Number of Bugs in One
Hour” on page 8-44

“Exhaustive Orange Review at Unit Phase” on page 8-46

“Exhaustive Orange Review at Integration Phase” on page 8-47
“Integration Bug Tracking” on page 8-49

“How to Find Bugs in Unprotected Shared Data” on page 8-50

“Dataflow Verification” on page 8-51

“Data and Coding Rules” on page 8-51

“Potential Side Effect of a Red Error” on page 8-51

“PolySpace Remembers the Relationships Between Variables” on page 8-53

“Why There Might be 2 Distinct Colors in a while/for Statement.” on page
8-54

Review Runtime Errors: Fix Red Errors

All Runtime Errors highlighted by PolySpace verification are determined
by reference to the language standard, and are sometimes implementation
dependant — that is, they may be acceptable for a particular compiler but
unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation
of 127+1 cannot be 128, but depending on the environment a “wrap around”

might be performed with a resulting value of -128.

This result is of course mathematically incorrect. If the value represents the
altitude of a plane, this could result in a disaster.

8-41

8 Reviewing Verification Results

8-42

By default, PolySpace verification doesn’t make assumptions about the way a
variable is used. Any deviation from the recommendations of the language
standard is treated as a red error, and must therefore be corrected.

PolySpace verification identifies two kinds of red checks

® Red errors which are compiler-dependant in a specific way. On some
occasions a PolySpace option may be used to allow particular compiler
specific behavior, and on others the code must be corrected in order to
comply. An example of a PolySpace option to permit compiler specific
behavior would be the option to force “IN/OUT” ADA function parameters
to be initialized. Examples in C include options to deal with constant
overflows, shift operation on negative values, etc.

e All other red errors must be fixed. They are bugs.
Most of the bugs you’ll find are easy to correct once they are identified.

PolySpace verification identifies bugs regardless of their consequence, or of
the ease with which they can be corrected.

Review Dead Code Checks: Why Gray Code is
Interesting
e “Functional Bugs Can Be Found in Gray Code” on page 8-42

e “Structural Coverage” on page 8-44

Functional Bugs Can Be Found in Gray Code

PolySpace verification finds different types of dead code. Common examples
include:

e Defensive code which is never reached

Dead code due to a particular configuration

Libraries which are not used to their full extent in a particular context

Dead code resulting from bugs in the source code.

The causes of dead code listed in the examples below are taken from critical
applications of embedded software by PolySpace verification.

Using PolySpace® Results

® A lack of parenthesis and operand priorities in the testing clause can
change the meaning significantly.

® Consider a line of code such as
IF NOT a AND b OR ¢ AND d

Now consider how misplaced parentheses might influence how that line
behaves

IF NOT (a AND b OR c AND d)
IF (NOT (a) AND b) OR (c AND d))
IF NOT (a AND (b OR c) AND d)
® The test of variable inside a branch where the conditions are never met;

® An unreachable “else” clause where the wrong variable is tested in the
“if” statement

® A variable that is supposed to be local to the file but instead is local to
the function

* Wrong variable prototyping leading to a comparison which is always false

(say)

As 1s the case for red errors, the consequence of dead code and the effort
needed to deal with it is unpredictable. It can vary

* From one week effort of functional testing on target, trying to build
a scenario going into that branch, and wondering why the functional
behavior is altered, to

* A 3 minutes code review discovering the bug.

Again, as for red errors, PolySpace doesn’t measure the impact of dead code.
The tool provides a list of dead code. A short code review will enable you

to place each entry from that list into one of the five categories from the
beginning of this chapter. Doing will identify known dead code and uncover

real bugs.

PolySpace experience is that at least 30% of gray code reveals real
bugs.

8-43

8 Reviewing Verification Results

8-44

Structural Coverage

PolySpace software always performs upper approximations of all possible
executions. Therefore even if a line of code is shown in green, there remains a
possibility that it is a dead portion of code. Because PolySpace verification
made an upper approximation, it could not conclude that the code was dead,
but it could conclude that no runtime error could be found.

PolySpace verification will find around 80% of dead code that the developer
would find by doing structural coverage.

PolySpace verification is intended to be used as a productivity aid in dead
code detection. It detects dead code which might take days of effort to find
by any other means.

Selective Orange Review: Finding the Maximum
Number of Bugs in One Hour

A selective orange review is appropriate for the early stages of development,
when you want to improve the quality of your code while it is being developed.
Performing a selective orange review allows you to find the maximum number
of bugs in a short period of time. For example, if you want to spend the first
hour of the day reviewing a verification that was performed overnight. This
type of review is generally supported by more extensive verification as the
project nears completion.

A selective orange review can generally find about 5 bugs (in orange checks)
during an hour of review.

Choosing What to Review

When performing a selective orange review, focus on the modules that have
the highest selectivity in your application, meaning the highest ratio of (green
+ gray + red) / (total number of checks).

If PolySpace verification finds only one or two in a module

or function, these checks are probably not caused by “basic imprecision.”
Therefore, it is more likely that you will find bugs in these orange checks than
in those found elsewhere in the code.

Using PolySpace® Results

Note For each function, PolySpace verification may be better at detecting
some kinds of Runtime Errors than others. For example, one function may
yield precise results for OVFL, but imprecise results for NIV, while a second
function may have the opposite results.

Therefor, you must apply the “high selectivity focus” to each type of error
separately.

Reviewing Oranges Quickly
While performing a selective orange review:

¢ Spend no more than 5 minutes per

e Review at least 50 checks an hour.

If you find a check that takes more than a few minutes to understand, it
may be the result of inconclusive PolySpace verification. To maximize the
number of bugs you can find in a limited time, you should move on to another
check. Generally, you should spend no more than 5 minutes on each check,
remembering that your goal is to review at least 50 checks per hour to
maximize the number of bugs found.

Performing a Selective Orange Review

The goal of a selective orange review is to identify the maximum number of
bugs within a short period of time.

To perform a selective orange review:
1 Select one type of RTE, such as Zero Division (ZDV).

FHte;
2 Click Filter all 2" | .

3 Click the type of check you want to review (ZDV in this example).

NIV SCAL
local | ouFL

FLOAT
OUFL I EEET

o | cor | Ry | see | RIY | wie NTC | K-HTE INTL UNR | woR

8-45

8 Reviewing Verification Results

4 Identify files containing only 1 or 2 of the selected type.

5 Using the call tree and dictionary, perform a quick code review on each
, spending no more than 5 minutes on each.

Your goal is to identify whether the is a potential bug,
inconclusive check or data set issue.

If the check proves too complicated to explain quickly, it may well be the
result of basic imprecision.

6 Once you identify the source of the orange check, select the Verified
checkbox in the PolySpace Viewer, and enter an explanation in the
comment field. For example, “inconclusive,” or “data set issue when
calibration of <x> is set greater than 100.”

7 Select another type of RTE and repeat the procedure.

Note You can use the Beta filter to highlight the types of check most
likely to include critical Runtime Errors.

Exhaustive Orange Review at Unit Phase

An exhaustive orange review during the unit testing phase can identify bugs
not found during the selective orange review. However, the cost of performing
an exhaustive orange review needs to be balanced with the cost leaving a
bug in the code.

An exhaustive orange review typically progresses at a rate of about 50
orange checks per hour. However, an hour spent on an exhaustive check
review is different to an hour spent on a selective orange review in several
significant ways:

¢ The first 10 minutes of the exhaustive check will be dedicated to the
classification of 2/3 of the orange as false anomalies.

® The last 40 minutes will be used to track more complex bugs.

80% of the will require only a few seconds of effort before a
conclusion can be reached. These are not integration bugs, so tracking the

8-46

Using PolySpace® Results

cause of an orange check is often much faster than the same activity in a larger
piece of code. The typical time spent reviewing each check is about 1 minute.

Note If you apply coding rules to your project, reviewing PolySpace results
generated by a unit verification normally takes no more than 15 minutes.

Exhaustive Orange Review at Integration Phase

An exhaustive orange during the integration testing phase can identify bugs
not found by a selective orange review. However, the time/cost of performing
an exhaustive orange review needs to be balanced with the cost leaving a
bug in the code.

Cost

Reviewing each orange check will typically take approximately 4-5 minutes .
400 orange checks will therefore require about four days of code review, and
3,000 orange checks will require 25 days.

However, if you review the checks as described in the Selective Orange
Review section, the first 80% of checks will take a much smaller amount of
time to review. You can then decide how far you want to pursue reviewing
the remaining checks.

Method

There are sometimes situations where files contain a particularly high
number of orange checks compared with the rest of the application. This may
well highlight design issues.

Consider the possible reasons for an orange check:

¢ Potential bug and Data set issues
® Inconclusive verification
* Data set issue

* Basic imprecision

8-47

8 Reviewing Verification Results

8-48

The method described in the following chapter explains how to focus on
finding potential bugs in the orange code. We will focus here on the first
and second types. We are assuming that in the modules containing the most

, those checks will prove inconclusive. If PolySpace verification
1s unable to draw a conclusion, the implication is often that the code itself is
very complex — which in turn can identify sections of code of low robustness
and quality.

Inconclusive. The most interesting type of inconclusive check is identified
when PolySpace verification states that the code is too complicated. In such a
case it is usually true that most in the problem file are related,
and that patient navigation will always draw the user back to a same cause —
perhaps a function or a variable modified many times. Experience suggests
that such situations often focus on functions or variables which have also
caused trouble earlier in the development cycle.

Consider an example below. Suppose that

® a signed is an integer between -2731 and 2731-1
® an unsigned i1s an integer between 0 and 2/32-1

® The variable "Computed_Speed" is copied into a signed, and afterward
into an unsigned, than signed, than added to another variable, and finally
produces 20 overflows (OVFL).

There is no scenario identified which leads to a real bug, but perhaps the
development team knows that there was trouble with this variable during
development and the earlier testing phases. PolySpace software has also
found this to be a problem, providing supporting evidence that the code is
poorly designed.

Basic Imprecision. On some rare occasions, a module will contain a lot

of basic imprecision due to approximations made by PolySpace. (For more
information, see “Sources of Orange Checks” on page 9-3 and “Approximations
Used During Verification”in the PolySpace Products for C Reference).

In this case, PolySpace verification can only assist by means of the call tree
and dictionary. This code needs to be reviewed by an alternative activity
- perhaps through additional unit tests or code review with the developer.

Using PolySpace® Results

These checks are usually local to functions, so their impact on the project
as a whole 1s limited.

Examples of extra activities might be

® Checking an interpolation algorithm in a function

® Checking calibration data consisting of huge constant arrays, which are
manipulated mathematically

Real Bugs and Data Sets. If the data set analyzed reveals real bugs, they
should be corrected If it highlights potential input bugs (depending on the
input data which might eventually be used) then the source code should be
commented.

Integration Bug Tracking

By default, integration bug tracking can be achieved by applying the selective
orange methodology to integrated code. Each error category will be more
likely to reveal integration bugs, depending on the chosen coding rules for
the project.

For instance, consider a function receives two unbounded integers. The
presence of an overflow can only be checked at integration phase, since at unit
phase the first mathematical operation will reveal an orange check.

Consider these two circumstances:

® When integration bug tracking is performed in isolation, a selective orange
review will highlight most integration bugs. In this case, a PolySpace
verification has been performed integrating tasks.

® When integration bug tracking is performed together with an exhaustive
orange review at unit phase, a PolySpace verification has been performed
on one or more files.

In this second case, an exhaustive orange review will already have been

performed file by file. Therefore, at integration phase only checks that have
turned from green to another color are worth assessing.

8-49

8 Reviewing Verification Results

8-50

For instance, if a function takes a structure as an input parameter, the
standard hypothesis made at unit level is that the structure is well initialized.
This will consequentially display a green NIV check at the first read access to
a field. But this might not be true at integration time, where this check can
turn orange if any context does not initialize these fields.

These orange checks will reveal integration bugs.

How to Find Bugs in Unprotected Shared Data

Based on the list of entry points in a multi-task application, PolySpace
verification identifies a list of shared data and provides several pieces of
information about each entry:

e The data type;

e A list of reading and writing accesses to the data through functions and
entry points;

® The type of any implemented protection against concurrent access.

A shared data item is a global data item that is read from or written to by
two or more tasks. It is unprotected from concurrent accesses when one task
can access it whilst another task is in the process of doing so. All the possible
situations are considered below.

e [f there is a possible scenario which would lead to such conflict for a
particular variable, then a bug exists and protection is required.

e [If there are no such scenarios, then one of the following explanations may
apply:
= The compilation environment guarantees an atomic read/write access on
variable of type less than 1, 2 bytes, and therefore all conflicts concerning
a particular variable type still guarantee the integrity of the variables
content. But beware when porting the code!

= The variable is protected by a critical section or a mutual temporal
exclusion. You may wish to include this information in the PolySpace
launching parameters and reverify.

Using PolySpace® Results

It is also worth checking whether variables are modified which are supposed
to be constant. Use the variables dictionary.

Dataflow Verification

Data flow verification is often performed within certification processes —
typically in the avionic, aerospace or transport markets.

This activity makes heavy use of two features of PolySpace results, which are
available any time after the Control and Data Flow verification phase.

e (Call tree computation

® Dictionary containing read/write access to global variables. (This can also
be used to build a database listing for each procedure, for its parameters,
and for its variables.)

PolySpace software can help you to build these results by extracting
information from both the call tree and the dictionary.

Data and Coding Rules

Data rules are design rules which dictate how modules and/or files interact
with each other.

For instance, consider global variables. It is not always apparent which global
variables are produced by a given file, or which global variables are used by
that file. The excessive use of global variables can lead to resulting problems
in a design, such as:

¢ File APIs (or function accessible from outside the file) with no procedure
parameters;

® The requirement for a formal list of variables which are produced and used,
as well as the theoretical ranges they can take as input and/or output
values.

Potential Side Effect of a Red Error

This section explains why when a red error has been found the verification
continues but some cautions need to be taken. Consider this piece of code:

8-51

8 Reviewing Verification Results

8-52

int *global_ptr; void other_function(void)
int variable_it_points_to;
{

void big_red(void)

{ if (condition==1)
int r;
int my_zero = 0; *global ptr = 12;
if (condition==1)

r =1/ my_zero; // red ZDV }

// hundreds of lines
global_ptr = &variable_it points_to;
other_function();

}

PolySpace works by propagating data sets representing ranges of possible
values throughout the call tree, and throughout the functions in that call tree.
Sometimes, PolySpace internally subdivides the functions for verification, and
the propagation of the data ranges need several iterations (or integration
levels) to complete. That effect can be observed by examining the color of the
checks on completion of each of those levels. It can sometimes happen that:

® PolySpace will detect gray code which exists due to a terminal RTE which
will not be flagged in red until a subsequent integration level.

e PolySpace flags a NTC in red with the content in gray. This red NTC is
the result of an imprecision, and should be gray.

Suppose that an NTC is hard to understand at given integration level (level 4):

e If other red checks exist at level 4, fix them and restart the verification

Using PolySpace® Results

e Otherwise, look back through the results from each previous level to see
whether other red errors can be located. If so, fix them and restart the
verification

PolySpace Remembers the Relationships Between
Variables

Abstract

Understand that a red error can hide a bug which occurred on previous lines.

10 int main(void) 1 double sqrt(double);
11 { 2 int read_an_input(void);
12 int x,0ld_x; 3

13 4 void f(int a)

14 x = read_an_input(); 5 {

15 o0ld_x = x; 6 int tmp;

16 7 tmp = sqrt(0-a);

17 if (x<0 || x>10) 8 }

18 return 0; 9

19

20 f(x);

21

22 x =1/ old_x; // division is red

23

24 }

Explanation 1
® When old_x is assigned to x (15 old_x = x;), PolySpace memorizes two
pieces of information:

= x and old_x are equivalent to the whole range of an integer: [-2"31 ;
2731-1];

= and x and old_x are equal.

e After the "if" clause (17 if (x<0 | | x>10)), X is equivalent to [0; 10]. Because
x and old_x are equal, old_x is equivalent to [0;10] as well, because
otherwise the return statement would have been executed,;

8-53

8 Reviewing Verification Results

8-54

When X is passed to "F" (20 f(x);), the only possible valid conclusion for
sqrt is that x is equal to 0. All other values lead to a runtime exception
(7 tmp = sqrt(0-a););

Back to line 22, because x and old_x are equal, old_x is also equal to 0.

Explanation 2

Supposing that PolySpace exits immediately when encountering a runtime
error, let’s introduce a print statement that will write to the standard
output after the "f" procedure has been called (20 f(x);), to show the current
value of x and old_x;

The only possibility of reaching the print statement is when X is equal to
0. So, if "x" is equal to 0, old_x must have been assigned to 0 too - which
makes the division red.

Summary

PolySpace builds relationships between variables and propagates the
consequence of these relationships backwards and forwards.

Why There Might be 2 Distinct Colors in a while/for
Statement.

It is sometimes true that inside the condition of a loop, a check is green then
red.

Consider the following example.

1 void main(void)

2 {

3 int tab[2] = { 1, 2 };

4 int index = 0;

5 while (tab[index]) { index--; }

// the colour of "array index within bounds" is
// first green

/] then red

6 }

Using PolySpace® Results

Clicking on the tab variable (line 5) in the Viewer will reveal the following

Error : pointer is outside its bounds <= then red
variable is initialized

Pointer is initialized

Pointer is initialized

Pointer is initialized

Pointer is initialized

pointer is within its bounds <= first green
Unreachable check : NIV

Now, visualize the C loop as having been transformed into a label and a goto

if (not(tab[index]) goto end;

// first location of the check is green
loop_begin:

index = index-1;
if (tab[index]) goto loop_begin;

/] second location of the check is red
end:

So, the second color represents the second pass through the loop, and (in
the example) should be investigated.

8-55

8 Reviewing Verification Results

8-56

Managing Orange Checks

¢ “Understanding Orange Checks” on page 9-2

¢ “Reducing Orange Checks in Your Results” on page 9-6
¢ “Reviewing Orange Checks” on page 9-20

® “Automatically Testing Orange Code” on page 9-26

9 Managing Orange Checks

Understanding Orange Checks

In this section...

“What is an Orange Check?” on page 9-2
“Sources of Orange Checks” on page 9-3

“Determining Cause of Orange Checks” on page 9-5

What is an Orange Check?

If a check is orange, it means that the approximate data set assumed by the
verification to represent a variable intersects with the error zone.

Hon empty intersection meats Operation: 1 { %%
iy
xZ
Graphical Representation of an Check

Behind this picture, the orange color can reveal any of the situations below.

Note Any an orange check can approximate a check of any other color.

Understanding Orange Checks

Red Gray
approximated approximated by
by
Any other Green
x situation: real approximated by
t e

il

If PolySpace software attempted to manipulate every possible discrete value
for all variables, the overheads for the verification would be so large that the
problem would become incomputable. PolySpace verification manipulates
polyhedrons representing data sets, and therefore cannot distinguish the

category of an . That task is left to you, and is detailed in the following
chapters.
(As a consequence, sometimes you may find an which represents

something which seems an obvious bug, and at other times you may find such
a check which is obviously safe. As far as the mechanism within PolySpace
software is concerned, it simply represents the intersection of two data sets
— which is why you are left to perform the results review to draw these
distinctions.)

Sources of Orange Checks

There are a number of possible causes of to be considered.

* Potential bug — an orange check can represent a real bug.
Example - loop with division by zero

® Inconclusive check — an orange check can represent a situation where
PolySpace verification is unable to conclude whether a problem exists. It
is sometimes in the nature of software code that it cannot be concluded

9-3

9 Managing Orange Checks

whether there is a potential error. In the example below, the task T1 can
be started before or after T2, so PolySpace verification cannot conclude
without the calling sequence being defined.

= Consider a variable X initialized to 0, and two concurrent tasks T1
and T2.

= Suppose that T'1 assigns a value of 12 to variable X

= Now suppose that T2 divides a local variable by X. The division is shown
as an orange check because T1 can be started before or after T2 (so a
division by zero is possible).

®* Data set issue — an orange check resulting from a theoretical set of data.
PolySpace verification considers all combinations of input data rather than
one particular combination (that is, it uses an upper approximation of
the data set). Therefore a check may be colored orange as the result of a
combination of input values which is analyzed by PolySpace, but which will
not be possible at execution time.

= Consider three variables X, Y and Z which can vary between 1 and 1000

= Now suppose that the code computes a value of X*Y*Z on a type 16 bits.
The result can potentially overflow. It may be known when the code is
developed that the variables cant all take the value 1000 at the same
time, but this information is not available to PolySpace software. The
code will be colored orange, accordingly.

® Basic imprecision — an orange check can be due to an imprecise
approximation.

= Consider that X, before the function call, can have the following values:
-5, -3, 8, or any value in range [10...20].

= This means that 0 has been excluded from the set of possible values
for X. Therefore, PolySpace software will approximate X in the range
[-5...20], instead of the previous unions of values, because of
imprecision and optimization.

= In this case, calling the function x = 1/x leads to an orange ZDV.
PolySpace is not able to prove the absence of a run-time error.

9-4

Understanding Orange Checks

Determining Cause of Orange Checks

Consider each of the four categories in turn. Bugs may be revealed by any
category of other than the “Basic imprecision” category.

* Potential bug — An orange check can reveal code which will fail under
some circumstances. The following section describes how to find them.

¢ Inconclusive verification — Most inconclusive orange checks will take
some time to investigate. An inconclusive orange check may well result
from a very complex situation such that it may take an hour or more to
understand the cause. You may decide to recode in order to be certain that
there is no risk, bearing in mind the criticality of the function and the
required speed of execution.

* Data set issue — It is normally possible to conclude that an orange check
is the result of data set problem in a couple of minutes. You may wish to
comment the code to flag this warning, or alternatively modify the code in
order to take constraints into account.

¢ Basic imprecision — PolySpace verification cannot help to debug this
code. You may or may not have a problem here, but you will need a
supplementary activity to be sure. Most of the time, a quick code review is
a suitable path to take, perhaps using the Viewers navigation facilities.

9 Managing Orange Checks

Reducing Orange Checks in Your Results

In this section...

“Options to Reduce Orange Checks” on page 9-6

“Generic Objectives: A Balance Between Precision and Verification Time”
on page 9-7

“Applying Coding Rules to Reduce Orange Checks” on page 9-8
“Varying the Precision Level” on page 9-13

“Applying Software Safety Level Wisely” on page 9-14

“Adding Precision Constraints at the Periphery Via Stubs” on page 9-15
“Describing Multitasking Behavior Properly” on page 9-17

“Tuning Advanced Parameters” on page 9-18

“Applying Data Ranges” on page 9-19

Options to Reduce Orange Checks

Although PolySpace verification is effective and straightforward to launch
with the minimum of effort, you may find that some applications would benefit
from some code preparation in order to streamline the job of working through
the resulting orange checks. There are four primary approaches which may
be adopted in isolation or in combination.

® Apply coding rules. This is the most efficient means to reduce oranges.

®* Implement manual stubbing of previously missing (and therefore
automatically stubbed) functions.

® Specify call sequences with care.

® Constrain some data assignments. Conventional testing verifies a single
set of data, whereas PolySpace software can analyze your module for
problems by taking into account all possible data values. If the range of
possible values is specified more precisely than the default “full range”
approach, then there will be less “noise” in the form of orange checks
resulting from “impossible” values.

Reducing Orange Checks in Your Results

Generic Objectives: A Balance Between Precision
and Verification Time

The methodology objective is quite simple: “To get the most precise results
in the time available”.

PolySpace verification needs to be fast and precise.

e [f a verification takes an eternity and the results contain the maximum
possible number of gray, red and green checks, this verification is not useful
because of the time spent waiting for the results.

e [f a verification is very quick but contains only , the
verification wont be very useful because of the large number of manual
checks to be performed.

Using PolySpace verification is a compromise between verification time and
precision. Factors such as the amount of time the developer has to assign to
using PolySpace software, and the stage in the V cycle also influence the
compromise. Consider for example the following scenarios that require the
PolySpace software to be used in different ways:

¢ Unit testing phase: before going to lunch, a developer starts a verification.
After returning from lunch the developer will analyze PolySpace results for
a maximum of one hour.

¢ Integration/module testing: before going home, a developer starts a
verification and will spend the next morning analyzing the results.

e Validation/acceptance testing: the developer leaves the office on Friday
evening and starts a verification. The developer will spend the following
week analyzing the results.

Note So verification time and precision depends on how long the developer
wants to wait for the results and the amount of time available to review the
results. It can happen that a verification never ends. The user might need to
split his application.

9-7

9 Managing Orange Checks

Note With knowledge of the tool, users will choose one of the four precision
options, (-00, -01,-02, or -03) before applying it to their process. It is implicit
that a higher precision will require a longer verification time - but will yield
more red, green and gray code and fewer oranges.

Most of the time, the first verification should use the lowest precision mode.

Note All activities and methods relating to results verification remain
unchanged regardless of the precision selected (-00, -O1,-O2 or -03).

Applying Coding Rules to Reduce Orange Checks

The number of per file strongly depends on the coding style
used in the project.

If your code follows the following subset of MISRA rules, the number of checks
per file will typically decrease to 3 and 3 gray checks, containing
at least one bug.

In addition, some constructions are known to produce a disproportionate
number of orange checks. Avoiding these constructions at the design stage
will improve your selectivity.

The following coding rules are recommended to reduce oranges:

e “Set of Coding Rules with a Direct Impact on Selectivity” on page 9-8

e “Set of Coding Rules with an Indirect Impact on Selectivity” on page 9-10

Set of Coding Rules with a Direct Impact on Selectivity
Following this set of coding rules will typically improve selectivity.

Rule # Description

MISRA 8. declarations of objects should be at function scope unless a
wider scope is necessary

Reducing Orange Checks in Your Results

Rule # Description

MISRA 8.11 | all declaration at file scope should be static where possible

MISRA 8.12 | When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization.

MISRA 10.4 | mixed precision arithmetic should use explicit casting to
generate the desired results

MISRA 10.5 | Bitwise operations shall not be performed on signed integer
types

MISRA 11.2 | Implicit conversions which may result in a loss of
information shall not be used

MISRA 11.5 | Type casting from any type to or from pointers shall not
be used.

MISRA 12.12 | The underlying bit representations of floating-point values
shall not be used.

MISRA 13.3 | Floating-point expressions shall not be tested for equality
or inequality.

MISRA 13.4 | Floating point variables shall not be used as loop counters.

MISRA 13.5 | Only expressions concerned with loop control should appear
within a for statement

MISRA 16.1 | Functions with variable numbers of arguments shall not
be used.

MISRA 16.2 | Functions shall not call themselves, either directly or
indirectly.

MISRA 16.7 | const qualification should be used on function parameters
which are passed by reference, where it is intended that the
function will not modify the parameter

MISRA 17.5 | The declaration of objects should contain no more than 2

levels of pointer indirection.

9 Managing Orange Checks

9-10

Rule # Description

MISRA 17.3 | Relational operators shall not be applied to pointer types
except where both operands are of the same type and point
to the same array, structure or union.

MISRA 17.6 | The address of an object with automatic storage shall not
be assigned to an object that may persist after the object
has ceased to exist.

MISRA 18.3 | overlapping variable storage shall not be used

MISRA 18.4 | Unions shall not be used to access the subparts of larger
data types

MISRA 20.4 | Dynamic heap memory allocation shall not be used.

Note MISRA rules 16.7, 17.3 and 18.3 are not checked.

Set of Coding Rules with an Indirect Impact on Selectivity
Following good practice in designing and writing “clean” software tends
to imply less complexity, and hence yields high selectivity from PolySpace
verifications. The following rules are especially significant in this regard.

Rule #

Description

MISRA 5.1

Identifiers (internal and external) shall not rely on
significance of more than 31 characters. Furthermore
the compiler/linker shall be checked to ensure that 31
character significance and case sensitivity are supported
for external identifiers.

MISRA 6.3

the basic types of char, int, short, long, float, and double
should not be used, but specific-length equivalent should
be “typedef’ for the specific compiler, and these type names
used in the code

MISRA 9.2

Braces shall be used to indicate and match the structure in
the nonzero initialization of arrays and structures.

Reducing Orange Checks in Your Results

Rule # Description

MISRA 9.3 In an enumerator list, the = construct shall not be used to
explicitly initialize members other than the first, unless all
items are explicitly initialized.

MISRA 10.3 The value of a complex expression of integer type may
only be cast to a type that is narrower and of the same
signedness as the underlying type of the expression.

MISRA 11.1 Conversions shall not be performed between a pointer to
a function and any type other than the integral type (All
the functions pointed to by a pointer to function shall be
identical in the number and type of parameters and the
return type).

MISRA 12.1 no dependence should be placed on C’s operator precedence
rules in expressions.

MISRA 12.2 The value of an expression shall be the same under any
order of evaluation that the standard permits.

MISRA 12.4 The right hand operand of a logical && or | | operator shall
not contain side effects.

MISRA 12.5 The operands of a logical && or || shall be
primary-expressions.

MISRA 12.6 Logical operators should not be confused with bitwise
operators.

MISRA 12.9 The unary minus operator shall not be applied to an
unsigned expression.

MISRA 12.10 | The comma operator shall not be used.

MISRA 13.1 Assignment operators shall not be used in expressions
which return Boolean values.

MISRA 13.2 Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean

MISRA 14.8 The statement forming the body of a if, else if, else, while,
do ... while or for statements shall always be enclosed in
braces

MISRA 14.10 | All if else if constructs should contain a final else clause.

9-11

9 Managing Orange Checks

Rule #

Description

MISRA 15.3

All switch statements shall contain a final default clause

MISRA 13.6

Numeric variables being used within a “for” loop for
iteration counting should not be modified in the body of
the loop.

MISRA 16.3

Identifiers shall either be given for all of the parameters in
a function prototype declaration, or for none.

MISRA 16.8

For functions with non-void return type:

1) there shall be one return statement for every exit branch
(including the end of the program),

1) each return shall have an expression

111) The return expression shall match the declared return
type.

MISRA 16.9

Functions called with no parameters should have empty
parentheses

MISRA 19.4

C macros shall only be used for symbolic constants,
function-like macros, type qualifiers and storage class
specifiers.

MISRA 19.9

Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives.

MISRA 19.10

In the definition of a function-like macro the whole
definition, and each instance of a parameter, shall be
enclosed in parentheses.

MISRA 19.11

Identifiers in preprocessor directives shall be defined before
use.

MISRA 19.12

There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

MISRA 20.3

The validity of values passed to library functions shall be
checked.

Note MISRA rule 20.3 is not checked.

9-12

Reducing Orange Checks in Your Results

Varying the Precision Level

One way to affect precision is to select the algorithm that will be used to model
the cloud of points. The exact method of modelling is managed internally, but
you can influence it by selecting the -00, -O1, -O2 or -O3 precision level. You
can also select a particular precision for a specific file.

The methods used by PolySpace to represent the data internally are reflected
in the level of precision to be seen in the results. As illustrated below, the
same orange check which results from a low precision verification will become
green when analyzed at a higher precision.

Operation: 1 / (x-¥)

Vary the Precision Rate

9-13

9 Managing Orange Checks

9-14

Applying Software Safety Level Wisely

Abstract
What are the differences between verification levels

Explanation

There follows an example of the distinction between Safety Analysis levels 1,
2 and 3. The deeper the verification goes, the more precise it is. Depending
on the backward/forward dependencies, oranges will be solved at the Safety
Analysis level 1, and some later in level 2 or 3.

* One way to effect precision is to select which algorithm will model
your cloud of points. The modelling is internal, and represented by a
precision level ranging from 0 to 2. You can select a particular precision
level for a specific body, which might differ from the default value for the
rest of the code.

* The level of a verification is the depth of verification of PolySpace
Verification. It starts with Safety Analysis 1 (which approximates to unit
verification) and normally goes up to level 4 (although it can go further if
exceptional circumstances require it). Each iteration corresponds to a
deeper level of propagation of calling and called context, as illustrated
below. A level of iteration is selected for the whole application and unlike
the precision level, it cannot be varied on a body-by-body basis.

PolySpace verification performs 4 levels of Software Safety Analysis by
default. Below is an example of the distinction between Safety Analysis levels
1, 2 and 3; the deeper the verification goes, the more precise it is. Depending
on the backward/forward dependencies, will be resolved into red,
green or gray at the Safety Analysis level 1 or later in level 2, 3 or 4.

The level of a verification represents the number of iterations performed
by PolySpace verification. Each iteration corresponds to a deeper level of
propagation of calling and called contexts. As an example, a division by

an input parameter of a function might produce an during Level

1 verification and then subsequently turn into green during level 2 or 3.
PolySpace software gains a more accurate knowledge of x when the value 1s

Reducing Orange Checks in Your Results

propagated deeper. Unlike the precision which is tuned for specific modules,
the level of safety verification is set for the whole application.

Safety Analysis Level 1

Safety Analysis Level 2

Safety Analysis Level 3

void ratio

(float x, float *y)
{
*y=(abs(
}
void leveli (float x,
float y, float *t)
{ float v;

vV =V;

ratio (x, &y);

t =1.0/(v - 2.0 * x);

-*y)) /(x+*y);

}
float level2(float v)

{

float t;

t = v;

leveli (0.0,

return t;

}

void main(void)

{

float r,d;

d= level2(1.0);
=1.0 (2.0 - d);

1.0, &t);

void ratio
(float x, float *y)
{
*y=(abs(x-*y))/(xt*y);
}
void levell (float x,
float y, float *t)
{ float v;
V=9,
ratio (x, &y);
*t =1.0/(v - 2.0 * x);
}
float level2(float v)
{
float t;
t = v;
leveli1 (0.0,
return t;
}
void main(void)
{
float r,d;
d= level2(1.0);
=1.0 (2.0 - d);

1.0, &t);

void ratio
(float x, float *y)
{
*y=(abs(x-*y))/(xt*y);
}
void levelil (float x,
float y, float *t)
{ float v;
vV =Y,
ratio (x, &y);
*t =1.0/(v - 2.0 * x);
}
float level2(float v)
{
float t;
t = v;
leveli (0.0,
return t;
}
void main(void)
{
float r,d;
d= level2(1.0);
r=1.0/ (2.0 - d);
}

1.0, &t);

Adding Precision Constraints at the Periphery Via

Stubs

Another way to increase the selectivity is to indicate to the PolySpace software
that some variables (detailed below) might vary between some functional
ranges instead of the full range of the considered type.

This primarily concerns two items from the language:

9-15

9 Managing Orange Checks

e Parameters passed to functions.

® Variables’ content, mostly globals, which might change from one execution
to another. Typically, these might include things like calibration data or
mission specific data. These variables might be read directly within the
code, or read through an API of functions.

Reduce the cloud of points

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing
will stub it on the assumption that it can potentially take any value from the
full type of an integer.

Given that PolySpace models data ranges throughout the code it verifies, it
will obviously produce more precise, informative results, provided that the
data it considers from the “outside world” is representative of the data that
can be expected when the code is implemented. There is a certain number
of mechanisms available to model such a data range within the code itself,
and three possible approaches are presented here. There is no particular
advantage in using one approach or another (except, perhaps, that the
assertions in the first two will usually generate orange checks) — it is largely
down to personal preference.

without assert, without
volatile, without "if"

with assert and without
volatile

with volatile and assert

9-16

#include <assert.h>

int stub(void)

{

volatile int random;

int tmp;

tmp = random;

assert(tmp>=1 && tmp<=10);

#include <assert.h>

extern int other_func(void);
int stub(void)

{

int tmp;

tmp= other_func();
assert(tmp>=1 && tmp<=10);

extern int other_func(void);
int stub(void)

{

int tmp;

do {tmp= other_func();}
while (tmp<1 || tmp>10);

Reducing Orange Checks in Your Results

return return return tmp;

} }

Increase the Number of Red and Green Checks

This example shows a header for a missing function (which might occur,

for example, if the code is an incomplete subset of a project). The missing
function copies the value of the src parameter to dest and so there would be a
division by zero (RTE) at run time.

int a,b;

int *ptr;

void a_missing_function(int *dest, int src);
/* should copy src into dest */

void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b =11/ a;

}

¢ By relying on the PolySpace default stub, the division is shown with an
warning because a is assumed to be anywhere in the full permissible
integer range (including 0)

e [f the function was commented out, then the division would be green.

e A red division could only be achieved with a manual stub.

Applying fine-level modelling of constraints in primitives and outside
functions at the application periphery will propagate more precision
throughout the application, which will result in a higher selectivity rate (more
proven colors, i.e. more red+ green + gray)

Describing Multitasking Behavior Properly

The proper description of the asynchronous characteristics of the application
(implicit task declarations, mutual exclusion, critical sections) is necessary if
the best results are to be achieved with the PolySpace software.

9-17

9 Managing Orange Checks

9-18

Consider two tasks T1 and T2 and a shared variable X set to O at initialization
phase:

e T1 sets X to 12

e T2 by X

Because the task T1 can be started before or after T2, the division 1s
Modelling the task differently could turn this orange check green or red.

Refer to “Preparing Multitasking Code” on page 5-20 for a complete description
of tasking facilities. These include:
e Shared variable protection:
= Critical sections,
= Mutual exclusion,
= Tasks synchronization,
® Tasking:
= Threads, interruptions,
= Synchronous/asynchronous events,

= Real-time OS.

Tuning Advanced Parameters

The Advanced Parameters provide a degree of control over some aspects of
PolySpace internal tuning. These are provided to allow the user to concentrate
verification time on specific aspects of the software. For example, the user
can decide whether or not to expand arrays and records by modelling each
element as a separate variable.

These options are specific to each language. Refer to “Precision/Scaling
Options™in the PolySpace Products for C Reference.

-0(0-3)
-modules-precision mod1:0(0-3)[,mod2:0(0-3)[,...]]

Reducing Orange Checks in Your Results

Applying Data Ranges

By default, PolySpace verification assumes that all data inputs are set to their
full range. Therefore, nearly any operation on these inputs could produce an
overflow. The Data Range Specifications (DRS) module allows you to set
external constraints on global variables and stub function return values.
This can substantially reduce the number of orange checks in the verification
results.

For more information, see “Applying Data Ranges to External Variables and
Stub Functions (DRS)” on page 4-25.

9-19

9 Managing Orange Checks

9-20

Reviewing Orange Checks

In this section...

“Selective Orange Review” on page 9-20
“Performing a Selective Orange Review” on page 9-21
“Exhaustive Orange Review” on page 9-22

“Performing an Exhaustive Orange Review” on page 9-23

Selective Orange Review

A selective orange review is appropriate for the early stages of development,
when you want to improve the quality of your code while it is being developed.
Performing a selective orange review allows you to find the maximum number
of bugs in a short period of time. For example, if you want to spend the first
hour of the day reviewing a verification that was performed overnight. This
type of review is generally supported by more extensive verification as the
project nears completion.

A selective orange review can generally find about 5 bugs (in orange checks)
during an hour of review.

Choosing What to Review

When performing a selective orange review, focus on the modules that have
the highest selectivity in your application, meaning the highest ratio of (green
+ gray + red) / (total number of checks).

If PolySpace verification finds only one or two in a module

or function, these checks are probably not caused by “basic imprecision.”
Therefore, it is more likely that you will find bugs in these orange checks than
in those found elsewhere in the code.

Reviewing Orange Checks

Note For each function, PolySpace verification may be better at detecting
some kinds of Runtime Errors than others. For example, one function may
yield precise results for OVFL, but imprecise results for NIV, while a second
function may have the opposite results.

Therefor, you must apply the “high selectivity focus” to each type of error
separately.

Review Oranges Quickly
While performing a selective orange review:

¢ Spend no more than 5 minutes per

e Review at least 50 checks an hour.

80% of require only a few seconds of effort before you can
reach a conclusion. These are not integration bugs, so tracking the cause of
an is often much faster than the same activity in a larger

piece of code.

If you find a check that takes more than a few minutes to understand, it
may be the result of inconclusive PolySpace verification. To maximize the
number of bugs you can find in a limited time, you should move on to another
check. Generally, you should spend no more than 5 minutes on each check,
remembering that your goal is to review at least 50 checks per hour to
maximize the number of bugs found.

Performing a Selective Orange Review

The goal of a selective orange review is to identify the maximum number of
bugs within a short period of time.

To perform a selective orange review:
1 Select one type of RTE, such as Zero Division (ZDV).

Filter.
2 Click Filter all 2" | .

9-21

9 Managing Orange Checks

3 Click the type of check you want to review (ZDV in this example).

NIV I ZCAL

v L SERL o fcor | me psee LMY | owze [FRORT IFISRT NTC | KeNTE INTL UM | vos

4 Identify files containing only 1 or 2 of the selected type.

5 Using the call tree and dictionary, perform a quick code review on each
, spending no more than 5 minutes on each.

Your goal is to identify whether the is a potential bug,
inconclusive check or data set issue.

If the check proves too complicated to explain quickly, it may well be the
result of basic imprecision.

6 Once you identify the source of the orange check, select the Verified
checkbox in the PolySpace Viewer, and enter an explanation in the
comment field. For example, “inconclusive,” or “data set issue when
calibration of <x> is set greater than 100.”

7 Select another type of RTE and repeat the procedure.

Note You can use the Beta filter to highlight the types of check most
likely to include critical Runtime Errors.

Exhaustive Orange Review

An exhaustive orange review is generally conducted later in the development
process, during the unit testing phase and integration testing phase. The
purpose of an exhaustive orange review is to identify bugs not found during
the selective orange review. The time/cost of performing an exhaustive orange
review needs to be balanced with the cost leaving a bug in the code.

Reviewing each orange check will typically take approximately 4-5 minutes .

400 orange checks will therefore require about four days of code review, and
3,000 orange checks will require 25 days.

9-22

Reviewing Orange Checks

However, if you review the checks as described in the Selective Orange
Review section, the first 80% of checks will take a much smaller amount of
time to review. You can then decide how far you want to pursue reviewing
the remaining checks.

Performing an Exhaustive Orange Review

Performing an exhaustive orange review involves reviewing each orange
check individually. However, there are some general guidelines to follow. In
any hour performing an exhaustive orange review:

® The first 10 minutes will be dedicated to classifying 2/3 of the orange
checks as false anomalies.

® The last 40 minutes will be used to track more complex bugs.

There are sometimes situations where files contain a particularly high

number of orange checks compared with the rest of the application. This may
well highlight design issues.

Consider the possible reasons for an orange check:

Potential bug and Data set issues

Inconclusive verification
®* Data set issue

* Basic imprecision

Generally, in the modules containing the most , those checks
will prove inconclusive. If PolySpace verification is unable to draw a
conclusion, the implication is often that the code itself is very complex —
which in turn can identify sections of code of low robustness and quality.

Inconclusive

The most interesting type of inconclusive check is identified when PolySpace
verification states that the code is too complicated. In such a case it is usually
true that most in the problem file are related, and that patient
navigation will always draw the user back to a same cause — perhaps a
function or a variable modified many times. Experience suggests that such

9-23

9 Managing Orange Checks

9-24

situations often focus on functions or variables which have also caused trouble
earlier in the development cycle.

Consider an example below. Suppose that

® a signed is an integer between -2731 and 2731-1
® an unsigned 1s an integer between 0 and 2/32-1

® The variable "Computed_Speed" is copied into a signed, and afterward
into an unsigned, than signed, than added to another variable, and finally
produces 20 overflows (OVFL).

There is no scenario identified which leads to a real bug, but perhaps the
development team knows that there was trouble with this variable during
development and the earlier testing phases. PolySpace software has also
found this to be a problem, providing supporting evidence that the code is
poorly designed.

Basic Imprecision

On some rare occasions, a module will contain a lot of basic imprecision due to
approximations made by PolySpace. (For more information, see “Sources of
Orange Checks” on page 9-3 and “Approximations Used During Verification”in
the PolySpace Products for C Reference).

In this case, PolySpace verification can only assist by means of the call tree
and dictionary. This code needs to be reviewed by an alternative activity

- perhaps through additional unit tests or code review with the developer.
These checks are usually local to functions, so their impact on the project
as a whole is limited.

Examples of extra activities might be

¢ Checking an interpolation algorithm in a function

® Checking calibration data consisting of huge constant arrays, which are
manipulated mathematically

Reviewing Orange Checks

Real Bugs and Data Sets

If the data set analyzed reveals real bugs, they should be corrected If it
highlights potential input bugs (depending on the input data which might
eventually be used) then the source code should be commented.

9-25

9 Managing Orange Checks

9-26

Automatically Testing Orange Code

In this section...

“Automatic Orange Tester Overview” on page 9-26

“Before Using the Automatic Orange Tester” on page 9-29
“Launching the Automatic Orange Tester” on page 9-31
“Reviewing the Test Results” on page 9-35

“Refining Data Ranges” on page 9-39

“Saving and Reusing Your Configuration” on page 9-43
“Exporting Data Ranges for PolySpace Verification” on page 9-44
“Configuring Compiler Options” on page 9-45

“Technical Limitations” on page 9-46

Automatic Orange Tester Overview

The PolySpace Automatic Orange Tester dynamically stresses unproven code
(orange checks) to identify runtime errors, and provides information to help
you 1dentify the cause of these errors.

The Automatic Orange Tester complements the results review in the Viewer
module of PolySpace Client for C/C++. Manually performing an exhaustive
orange review can be time consuming. The Automatic Orange Tester saves
time by automatically creating test cases for all input variables in orange
code, and then dynamically testing the code to find actual runtime errors.

The Automatic Orange Tester also provides detailed information on why each
test-case failed, including the actual values that caused the error. You can
use this information to quickly identify the cause of the error, and determine
if there 1s an actual bug in the code.

Automatically Testing Orange Code

PuIySpace Automatic Orange Tester - _testgen.tgf - |EI|5|
File Options Help

“ariahle Mame Type Values I Advanced If‘i
E—D External Scope =

= El Function: randaom_flost
return

= l:l Function: randarn_int
return

= El Function: get_bus_status
return

= l:l Function: read_bus_status

I—Q return
—

.

floets2

int32

int32

int32

rin.ma __Advarced |
. e __tawverced |

min. mex __Advanced |
in.max _tdvanced |y

~Test Campaign Configuration

~Test Campaign Results

Completed tests: 1000
ey @ ik I {00 Mo PolySpace run-time errors detected: 71l
Murber of terstions for infinite loogps: 100 Tatal failec: 929
i - 10,929
Per test timenot (in second) I 10 Mumber of checksiTests with errors: i
Timeaut: 0
Stopped tests: o
Start Sty & | Shap GLrrent |
Results File: Line Calurn Ertor # Testcaszes Failedl #=
_Llog excample.c 26 2 AZRT (User Azzertion Failed) 164 |~
example.c 114 16 ICP (llegal Dereference of Pointer) |45
example.c 49 16 UIMFL (Float Underflaw) 55
exarnple.c 104 10 IDF (llegal Dereference of Pointer) (147
example.c 193 17 MTC (Mot Terminsting Call) 73
example.c 43 12 UMFL (Flost Under flow) 137
example.c 43 12 %FL (Flost Creerflows 114 e
example.c 49 16 OWFL (Flost Crverflows) 71 LI

PolySpace® Automatic Orange Tester

9-27

9 Managing Orange Checks

Note The version of the product used to verify the source code must be the
same as the one used for analysis in the Automatic Orange Tester. If you
open verification results created with an older version of the product in the
Automatic Orange Tester, you may get a compilation error.

To avoid this problem, re-launch the code verification with the current version
of the product.

9-28

Automatically Testing Orange Code

How the Automatic Orange Tester Works

PolySpace verification mathematically analyzes the operations in the code

to derive its dynamic properties without actually executing it (see “What is
Static Verification” on page 1-4). While this verification can identify almost all
runtime errors, some operations cannot be proved either true or false because
the input values are unknown. These are reported as Orange checks in the
Viewer (see “What is an Orange Check?” on page 9-2).

The Automatic Orange Tester takes the PolySpace verification results, and
generates instrumented code around orange checks so the code can be run. It
then generates test cases based on the input variables, and dynamically tests
the code for runtime errors.

This dynamic testing approach allows the Automatic Orange Tester to
separate actual runtime errors from theoretical problems. You can then focus
on these errors to determine if an orange check is identifying an actual bug.

Limitations of Dynamic Testing

Because the Automatic Orange Tester uses a finite number of test cases to
analyze the code, there is no guarantee that it will identify a problem in any
individual test campaign. It is therefore possible that a particular variable
value causes an error, but that value was never tested.

Similarly, since the Automatic Orange Tester builds test cases each time
your run it, there is not guarantee that it will produce the same results with
each test campaign.

You can specify the number of tests to run in each test campaign. Running
more tests increases the chances of finding a runtime error, but also takes
more time to complete.

Before Using the Automatic Orange Tester

Before you can use the Automatic Orange Tester, you must run a PolySpace
verification with the -prepare-automatic-tests option enabled. This option
generates the data necessary to perform dynamic tests in the Automatic
Orange Tester.

To run the verification:

9-29

9 Managing Orange Checks

9-30

1 Open the PolySpace Launcher for C.

2 Load the project Demo_C-without-MISRA-checker.cfg.

3 In the Analysis Options window, expand the PolySpace inner settings

menu.

4 Select the Automatic Orange Tester check box.

Search interhal natme from the selected line I

FeNpry)

ETS alue

Irternal harme

Analysis options

eneral

TargetJ‘Cn:nmpilatin:nn

Dmpliance with standards

f—]—PDIySpace inner settings

enerate & main ¥

Fmain-generatar

F-Stubbing

I.Jﬂ—.&ssumptiuns
Automatic Orange Tester ¥ [,
F-Cthers 8

~prepare-automatic-tests

FPrecizio

nf=caling

urt'rtasking

The -prepare-automatic-tests option is enabled.

5 Deselect Send to PolySpace Server.

6 Click Execute.

The PolySpace verification starts. During the compilation phase, the
software generates the data necessary to perform dynamic tests. The

PolySpace verification then continues as usual.

When the verification process completes, the software asks if you want to

launch PolySpace Viewer.

7 Click OK

to launch the viewer.

Automatically Testing Orange Code

Launching the Automatic Orange Tester

Once the PolySpace verification is complete, you can use the Automatic
Orange Tester to perform dynamic tests of the unproven (orange) code.

To perform dynamic tests with the Automatic Orange Tester:

1 Open your results in the PolySpace Viewer.

9-31

9 Managing Orange Checks

EPDIySpace Yiewer - C:\PolySpace' PolySpaceForCandCPP_R2008a" Examples'Demo

=18l

File Edit “Windows Help
E
J o B| 9 o | W B Gl e 1 J NsHR J o i"fff “Alpha -] & Assistantl
PROC 1 i " e FLOAT
J ‘ x 3 7 b4 7 OBRI 2DV) aunch the PolySpace Automatic Oranger Tester.| GNP - Gl - T - e - G - Gk - U0 - G
Coding review progress Court Progress : example.c f Close_To_Zero fline 43 fcolurmn 12
0 if [(xmax xmin) < l.0E-37L)
nk reviewed §nkb to review (Orange) 0521 u]
Software reliability indicator 2497299 3| | &3] I B
Y
-
4
Procedural entities | 1 X| kd Bl | BT variables View |ul|(®Call Tree Yiew ol
ﬁ Dermo_C g | 249 | A 4
= Jy
[H-example o)0 o Dema_C = weample.Clase_To
is 10 fivritten by 4 |h—ini‘tialisations.z Beth I_ b pst_stub
[00 Read by > @—ini‘tialisations.c L B pst_stub
- IR 1 [-initializations .f ¢ Calledby 4
v woa fritten by task Al | ie-initiatsations 2
e 1 S I [-initialisations 1 @ calls b
1 |h—single_fi|e_anz p Complete
Faotertizlly Written b @—single_file_anz
1 : 4 . I- Update on selection
Fotentizlly Read b [b‘sfng'e—ff'e—a"‘
|I$—5|ngle_ﬂle_anz -
41 3 1 |
1
R
‘ =]
1 36 i
37 static woid Close_To_Zero (woid) Y
1 33 {
| UOWFLIS 1 33 float xmin = random float():
Lo nrL e { L 40 float xmax = randow £loat();
BN _Infinit=_Loop () 12 4l float y:
[H—Fuointer_Adthmetic) 1 4 23 4z) i
bRTEC) 1 3 43 if f (xmax xwin) « 1.0E-37f)
- 15 - {
45 v = l.0£;
[H—Resursion_saller [1 4 a5) =
1 z
H=Square_Roct (3 - 47 else ﬂ
I SR Pt ey o
Kl | 4 _‘Ll »
| Cemo_C Source file: example.c example.c Line: 185 Column: 12

9-32

Automatically Testing Orange Code

2 Click El (Launch the PolySpace Automatic Orange Tester) in the toolbar

to open the Automatic Orange Tester.

The Automatic Orange Tester opens.

HPuIySpace Automatic Orange Tester - _testgen.tgf - IEI|5|
File ©ptions Help
Yariahle MName I Type I Values I Advanced Ifﬂ
EI—D External Scope =
D Function: random_flost
flost32 i, max Advaniced I
D Function: randam_irit
return int32 min. friax Advanced I
Function: get_bus_status
i I |
P
~Test Campaign Configuration —————————— ~Test Campaign Results
Completed tests: o
e @i it I 1000 Mo PolySpace run-tifme errors detected: 0
Murmber of iterstions for infinite loops: 100 Total failed: o
Per test timeott (in second: I 10 Mumber of checks/Tests with errars:
Timeaut: 0
Stopped tests: 0
Start Stap &l | Shop Gurrent |
el | 0%
Results File Line Column Errar | # Testcases Failed I ®
Log e
|

3 In the Test Campaign Configuration window, specify the following
parameters:

9-33

9 Managing Orange Checks

e Number of tests — Specifies the total number of test cases you want to
run. Running more tests increases the chances of finding a runtime
error, but also takes more time to complete.

® Number of iterations for infinite loops — Specifies the maximum
number of loop iterations to perform before the Automatic Orange Tester
identifies an infinite loop. A larger number of iterations decreases the
chances of incorrectly identifying an infinite loop, but also may take
more time to complete.

® Per test timeout — Specifies the maximum time that an individual test
can run (in seconds) before the Automatic Orange Tester moves on to
the next test. Increasing the time limit reduces the number of tests that
timeout, but can also increase the total verification time.

4 Click Start to begin testing.

The Automatic Orange Tester generates test cases and runs the dynamic
tests.

9-34

Automatically Testing Orange Code

olySpace Automatic Orange Tester - _testgen.tgF - |EI|1|

File Options Help

d

“arighle Mame Type “alues | Aevanced I
El—[l External Scope
[l Function: random_float

L@ floats2 FriF. i Sekvanced I

[l Function: randarm_int

L@ return int32 Hin. P Aovanced I

|»

Function: get_bus_status
T4 (R I |
-y
~Test Campaign Configuration ——————————— ~Test Campaign Results
Completed tests: blb
iR G s I iy Mo PalySpace run-ime errors detected: 44
Murmiber of terations for infinite loops: 100 Total failc: 572
i - 10/572
Per test timeout (in second) I 10 Mumber of checks/Tests with errors: f
TirneoLt: o
Stopped tests: o
=t
% | Stop Al Stop Current
Running... Time Remaining: 0:0:6
eaults File Line Calumn Errar # Testcases Failled |
IDP (llegsl Del
exatnple . 26 2 ASRT (User Azserti.. (104
exarmple . 43 12 O%FL (Flost Cwverflo... (79
example .c 43 12 UMFL (Float Underflo. .. (64
example 114 16 OWFL (Scalar Cverfl... (83
example 193 17 MTC (Mon Terminatin... (51
exatnple . 114 16 IDP (llegal Dereferen... (21
anaramla . AQ 1F MFL (R Imat Carfle A ;I

5 If you want to stop the testing before it completes:
¢ (Click Stop Current to stop the current test an move on to the next one.

¢ (Click Stop All to immediately stop all tests.

9-35

9 Mana

ging Orange Checks

9-36

Reviewing the Test Results

When testing is complete, the Automatic Orange Tester displays an overview
of the testing results, along with detailed information about each failed test.

~Test Campaign Configuration——————— ~Test Campaign Results
Completed tests: 1000
PR @ e I 1000 Mo PolySpace run-time errors detected: 72
rurrber of terations far infinite loops: 100 Tatal faileck 928
i - 10,/928
Per test timeout fin second) I 10 Mumber of checksiTests with errors: f
Titmeawt: o
Stopped tests: o
Start Stag Al | Stop CLrrent |
R E File: Line Colutin Etror # Testcazes Failed | &=
_Llog example c 104 10 ICP (llegal Dereference of Pointer) 166 =
example 26 2 ASRT (User Azzertion Failed) 156
example . 43 12 O FL (Float Crverflow) 131
example.c 43 12 UMFL (Flost Underflow) 105
example 114 16 OYWFL (Scalar Overflow) 129
example 193 17 MTS (Mon Terminsting Call) 74 o
example . 114 16 IDF (llegal Dereference of Pairter) a7
examnle.c 49 16 O FL (Float Ower flow’ 52 ﬂ

Test Campaign Results
The Test Campaign Results window displays overview information about the

results of your dynamic tests, including:
e Completed tests — Displays the total number of tests completed.

¢ No PolySpace runtime errors detected — Displays the number of tests
that did not produce a runtime error.

e Total failed — Displays the number of tests that produced a runtime error.

¢ Number of checks/Tests with errors — Displays the number of
PolySpace checks that produced at least one failed test, as well as the total
number of tests that produced a runtime error.

Automatically Testing Orange Code

* Timeout — Displays the number of tests that exceeded the specified Per
test timeout limit.

* Stopped tests — The number of tests that were stopped manually.
Use the Test Campaign Results Window to see an overall assessment of

your test results, as well as to decide if you need to increase the Per test
timeout value.

Results Table

The Results table displays detailed information about each failed test, to help
you identify the cause of the runtime error. This information includes:

¢ The filename, line number, and column in which the error was found.
¢ The type of error that occurred.

e The number of test cases in which the error occurred.

In addition, You can view more details about any failed test by clicking on the
appropriate row in the Results table. The Test Case Detail dialog box opens.

9-37

9 Managing Orange Checks

9-38

i -0l x|
exammple.c I
104 *p= 5 M Out of bounds *f ;I
105 i
106 elze
107 1
105 i++ 1
109 i
110 i
111
112 i=get_bus_status();
113
114 if (i==0) {l:p-ij =10} ;I
-
'Line: 114 {col 16): O¥FL {Scalar Overflow)
TeztCaze I Reazon I
] In operstion 4 * 2105801479 | result type iz int 32) =
7 In operstion 4 * 12587494010 | result type iz int 32]
] In operstion 4 * 1858198915 | result type iz int 32) e
Gy In operstion 4 * 1690025407 | result type iz int 32]
=9 In operstion 4 * 1158384130 |, result type iz int 32)
=3 In operstion 4 * 20835158559 | result type iz int 32]
T In operstion 4 * 1734856398 | result type is int 32)
5] In operstion 4 * 1 302685826 | result type is int 32)
72 In operstion 4 * 1 397860002 |, result type is int 32]
7a In operstion 4 * 1218154806 | result type is int 32)
11 In operstion 4 * 1444654135 | result type is int 32)
3 In operstion 4 * 537346062 | result type is int 32]
38 In operstion 4 * 1926227358 | result type is int 32)
40 In operstion 4 * 875754284 | rezult type is int 32] LI

The Test Case Detail dialog box displays the portion of the code in which the
error occurred, and gives detailed information about why each test case failed.
Since the Automatic Orange Tester performs runtime tests, this information

includes the actual values that caused the error.

You can use this information to quickly identify the cause of the error, and

determine if there is an actual bug in the code.

Automatically Testing Orange Code

Log
The Log window displays a complete list of all the tests which failed, as well
as summary information.

You can copy information from the log window to paste into other applications,
such as Microsoft® Excel®.

~Test Campaign Configuration——————————— ~Test Campaign Results
Completed tests: 1000
AT s I 1000 Mo PolySpace run-time errars detected: 72
rurrber of terations for infinte loops: 100 Tatal failec: 928
i - 10,/928
Per test timeout in second) I 10 Mumber of checksiTests with errors: i
Titneout: o
Stopped tests: o
Start Stag Al | Shop Current |
ResUts fTest 1000: Warning: example.c:70 (ool 1) ikeration count = 100 ;I
Log [Test 1000 example.c:104 (col 10) Red IDP (Ilegal Dereference of Pointer) [Invalid pointer, dereference size of 4 byte
Test Summary
Mumber of tests 1000
Completed tests 1000
Mo PalySpace run-time erraors detected 72
Takal failed 928
Murmber of checks|Tests with errors 10925
Timeaukt 1]
Stopped tests 0
Test duration: 18 seconds
Test ended at: Thu Jan 24 14:24:32 EST 2008 hd
1| | 3|

The log file is also saved in the PolySpace-Instrumented directory with the
following filename:
TestGenerator_day_month_year-time.out

Refining Data Ranges

The Automatic Orange Tester allows you to specify ranges for external
variables. This allows you to perform runtime tests using real-world values
for your variables, rather than randomly selected values.

9-39

9 Managing Orange Checks

Setting ranges for your variables reduces the number of tests that fail due to
unrealistic data values, allowing you to focus on actual problems, rather than
purely theoretical problems.

To refine your data ranges:

1 In the Variables section at the top of the Automatic Orange Tester, identify
the variable for which you want to set a data range.

PulySpace Automatic Orange Tester - _testgen.tgf - |Elli|
File Options Help
“ariahle Mame Type ‘alues | Achvanced |53
El—[l External Scope 1
= D Function: random_flost
return float32 mif. Advanced |
= El Function: randarm_irt
return int32 il b Advanced |
= l:l Function: get_bus_status
return int3z2 it i Advanced [: l_
= D Function: read_bus_status
return int32 TiiF. FiE Acvanced |
= El Function: read_on_hus j
F . A
-
~Test Campaign Configuration ~Test Campaign Results)
Completed tests: 1000
e G i I 0o Mo PolySpace run-time errors detected: 80
Murnber of terations for infinite loops: 100 Total failed: 920
i . 10,/920
Per test timeout (in second): I 10 Murnber of checksiTests with errors: /
Timeaut: 0
Stopped tests: o
Start Sty & | Shap LTt |
Resutts File Line Column I Errar I # Testcases Failed | =
Lot lewample.c 114 16 CWFL (Soalar Owerfl... [120 =
exarnple.c 104 10 IDP (llegal Dereferen... (159 e
example.c 26 2 ASRT (User Asserti... (130
example.c 43 12 UMFL (Flost Underflo... (114
example.c 49 16 UMFL (Float Underflo. .. (64 j

9-40

Automatically Testing Orange Code

2 Select Advanced. The Edit Values dialog box opens.

-ioix]

File: INDne - External Scope

Function: Iget_bus_status return

Type: firtaz
Values: Imin LrE
—Witing mode

If the wariable iz & pointer this option allows the setting of the weriting mode.

¥ irite the pointed object

Wariting mode: INO i I

SING : Only the ohject or first elemernt in an array pointed to will be written.
MWULT : The complete abject will be written. Far example with an array all the elements will be written.

—Wariakle Values

" Single Value I
+ Range of values min: Imin]
e IEI T
Previous | Mext | Ok Cancel

3 Set the appropriate values for the variable:
Single Value — Specifies a constant value for the variable.

Range of values, — Specifies a minimum and maximum value for the
variable.

Note For pointers, you can also specify the writing mode:

SING — The tests only write the object or first element in the array.

MULT - The tests write the complete object, or all elements in the array.

9 Managing Orange Checks

4 Click Next to edit the values for the next variable.

5 When you have finished setting values, click OK to save your changes
and close the Edit Values dialog box.

6 Click Start to retest the code.

The Automatic Orange Tester generates test cases, runs the tests, and
displays the updated results.

9-42

Automatically Testing Orange Code

PuIySpace Automatic Orange Tester - _testgen.tgf - |EI|5|
File Options Help

d

“ariahle Mame Type Values I Advanced I
E—D External Scope
= El Function: random_float

Le float32 0.10000000 Advanced |

= l:l Function: randarn_int

I—Q return int32 min..0 Achvancedd I

= El Function: get_bus_status

L= retumn int32 00,0 Advanced ||

= l:l Function: read_bus_status

L@ return int32 Hin. P Advanced I

| »

= D Function: read_on_bus ;I
-
~Test Campaign Configuration——— ~Test Campaign Results
Completed tests: 1000
ey @ ik I 000 Mo PolySpace run-time errors detected: 997
Murmber of iterations for infinite loops; 100 Total failed: 3
I . 1/3
Per test timeout (in second): I 10 Murnber of checksiTests with errors: A
Timeaut: 0
Stopped tests: o
Start St & | Shap Gurrent |
Test Completed Time Remaining: 0:0:0 T
Resutts | File: I Line I Calutn I Error I # Testcases Failed |fﬂ
_log exarmple .o |114 |1B |IDP llegal Dereferen...|3 I;

The updated results show fewer failed tests, allowing you to focus in on
any actual code problems.

Saving and Reusing Your Configuration

You can save your Automatic Orange Tester preferences and variable ranges
for use in future dynamic testing.

9-43

9 Managing Orange Checks

9-44

To save your configuration:

1 Select File > Save.
2 Enter an appropriate name and click Save.

Your configuration is saved in a .tgf file.
To open a configuration from a previous verification:

1 Select File > Open.
2 Select the appropriate .tgf file, then click Open.

The configuration is opened.

When you open a previously saved configuration, the Log window displays
any differences in the configuration files. For example:

e [f a variable does not exist in the new configuration, a warning is displayed.

e [f the ranges for a variable are no longer valid (if the variable type changes,
for example), a warning is displayed and the range is changed to the largest
valid range for the new data type (if possible).

Exporting Data Ranges for PolySpace Verification

Once you have set the data ranges for your variables, you can export them to a
Data Range Specifications (DRS) file for use in future PolySpace verifications.
This allows you to reduce the number of orange checks identified in the
PolySpace Viewer.

To export your data ranges:

1 Set the appropriate values for each variable you want to specify.
2 Select File > Export DRS.
3 Enter an appropriate name and click Save.

The DRS file is saved.

Automatically Testing Orange Code

For information on using a DRS file for PolySpace verifications, see “Applying
Data Ranges to External Variables and Stub Functions (DRS)” on page 4-25.

Configuring Compiler Options

On UNIX, Solaris, or Linux systems, you must configure your compiler and
linker options before using the Automatic Orange Tester.

Note On Windows systems, the compiler options cannot be modified. You
can only configure the library dependencies.

To set compiler and linker options:
1 Open the Automatic Orange Tester, as described above.
2 Select Options > Configure.

3 The Preferences dialog box opens.

9-45

9 Managing Orange Checks

Preferences

CPolyEpace\Poly Space_CommoniAutamsaticOrange Testerlcobinilcs exe
_ PolySpace\PolySpace CommonldutomaticOrangeTesterlcciinclude

ZPolySpacePolySpace_CommonldutomaticOrangeTester oo binlocink exe
[\PolySpace\PolySpace_CommonlAutomaticCrangeTestericcilib
- alySpace'PolySpace_CommonidutomaticCrange Testercoilibiibe lib =

4 Set the appropriate parameters for your compiler.

9-46

Automatically Testing Orange Code

Technical Limitations

The Automatic Orange Tester has the following limitations:

e “Unsupported PolySpace Options” on page 9-47
® “Options with Limitations” on page 9-47
e “Unsupported C Language Constructions” on page 9-47

Unsupported PolySpace Options

The following options are not supported when you select
-prepare-automatic-tests.

® -entry-points

e -dialect

e -ignore-float-rounding

® -div-round-down

® -char-is-16its

® -short-is-8bits

® -respect-types-in-globals

® -respect-types-in-fields

In addition, Global asserts in the code of the form Pst_Global Assert(A,B)
are not supported with the Automatic Orange Tester.

Options with Limitations

The following options cannot take specific values when you select
-prepare-automatic-tests.

e -target [tms320c3c | sharc21x61]

e .data-range-specification (in global assert mode)

Unsupported C Language Constructions
The code verification stops when any of the following characteristics are met:

9-47

9 Managing Orange Checks

9-48

e ANSI C99 long long and long double types are unsupported for Windows
systems

e (Calls to following routines are unsupported:

= va_start

= va_arg
= va_end
va_copy
setjmp
sigsetjmp
longjmp
siglongjmp

The following C language constructions are ignored:

® The endianness of the target is not managed. The tests are performed as if
the user-defined target has the same endianness as the hardware on which
the Automatic Orange Tester is running

e (Calls to the following routines are ignored:

= signal

= sigset

= sighold

= sigrelse
sigpause
sigignore
sigaction
= sigpending
sigsuspend
= sigvec

= sigblock

Automatically Testing Orange Code

sigsetmask
sigprocmask
siginterrupt
srand
srandom
initstate

setstate

9-49

9 Managing Orange Checks

9-50

Day to Day Use

® “PolySpace In One Click Overview” on page 10-2
e “Using PolySpace In One Click” on page 10-3

l 0 Day to Day Use

PolySpace In One Click Overview

Most developers verify the same files multiple times (writing new code, unit
testing, integration), and ususally need to run verifications on multiple project
files using the same set of options. In a Microsoft Windows environment,
PolySpace In One Click provides a convenient way to streamline your work
when verifying several files using the same set of options.

Once you have set up a project file with the options you want, you designate
that project as the active project, and then send the source files to PolySpace
software for verification. You do not have to update the project with source
file information.

On a Windows systems, the plug-in provides a PolySpace Toolbar in the
Windows Taskbar, and a Send To option on the desktop pop-up menu:

Sek active project 3

Open active project - New_Project

Viewer

Launcher

£ 15

Spoaler
Help 3

Exit

BER EET

Send To d | Compressed (zipped) Folder
Cuk [ﬁ} Deskkop (create shortout)
Copy (# Macromedia FreeHand My
Create Shorkcut | Mail Recipient
Delete I2) Move ko SendTo
Feenams [} My Documents
Properties FalySpace

ﬁ 31 Floppy (A:)

ok DWDJCD-RW Drive (2:)

10-2

Using PolySpace® In One Click

Using PolySpace In One Click

In this section...
“PolySpace In One Click Workflow” on page 10-3

“Setting the Active Project” on page 10-3

“Launching Verification” on page 10-5

“Using the Taskbar Icon” on page 10-9

PolySpace In One Click Workflow

Using PolySpace In One Click involves two steps:
1 Setting the active project.
2 Sending files to PolySpace software for verification.

Setting the Active Project

The active project is the project that PolySpace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. PolySpace software uses the analysis
options from the project; it does not use the source files or results directory

from the project.
To set the active project:

1 Right-click the PolySpace In One Click icon in the taskbar area of your
Windows desktop:

The context menu appears.

10-3

l 0 Day to Day Use

Set active project k

Open ackive project - Example_Project

Viewer

Launcher

7 & T

Spoaler
Help »

Exit

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

10-4

Using PolySpace® In One Click

Please set an active project. d |

Laak i I&} polvzpace_project j 4= fji v

includes
resulks
S0UFCES

Cia example.cfg

L

File name: || j | Open I
Files af type: IF'DI_I,ISpace configuration files j Cancel |
p

3 Select the project you want to use as the active project.

4 Click Open to apply the changes and close the dialog box.

Launching Verification
PolySpace in One Click allows you to send multiple files to PolySpace software

for verification.
To send a file to PolySpace software for verification:

1 Navigate to the directory containing the source files you want to verify.

2 Right-click the file you want to verify.

10-5

l 0 Day to Day Use

The context menu appears.

[armne |
-

Open

Edit

Cpen with wordPad
ca Scan For viruses, .,

Cpen iith »
&3 'WinZip 3

Send To]

Zuk

Copy

Create Shortcut
Delete
Rename

Properties

3 Select Send To > PolySpace.

10-6

Using PolySpace® In One Click

Marme | Size | Tvpe
ot SKE CFile
Open
Edit
Cpen with WordPad
2 Scan for viruses, ..
Cpen Wikh »
&) WinZip 3
£] Compressed (zipped) Folder
uk @ Desktop (create shorbout)
apy [Fax Destination via RightFax
reate Shortouk (# Macromedia FreeHand M
Delete

| Mail Recipient
Rename
,D MMy Documents

Properties FalySpace

4L 314 Floppy (A2)

The PolySpace basic settings dialog box appears.

10-7

1 0 Day to Day Use

Settings

Precision

Passes

Parameters

Results directory |C:\polyspace_projel:t\results |
Function called before main | |
Main generator write variables INone j
Scope

Chvpolyspace_projectysourcesiexample.c

[[+

¥l Send to PolySpace Server @ EHecutel @ Cancell

Note The options you specify the basic settings dialog box override any
options set in the configuration file. These options are also preserved
between verifications.

4 Enter the appropriate parameters for your verification.

10-8

Using PolySpace® In One Click

5 Leave the default values for the other parameters.

6 Click Execute.

The verification starts and the verification log appears.

E:"-.,pulyspace _project' resultsh Example_Project.log

HEHE O @-

[F Function random_float 1= pure. Retums an niaized vale.
Generating the Main ..

Generating call to function: RTE
Daing code transformations ...

i3]

52 zources verification done

£33

[[Ending at: May 13, 2008 & 32:20

=zer time for suif: S.4real, 5.4u + 0=

- [Zenerating remate file

. |Bone

=zer time for polyspace-c S .8real, 5.5u + Oz

£33

*** End of PolySpace Yerifier analysis
EE+3

Adding the analyzis to the gueue ...
Transfering the archive to the server ...

Tranzfer completed.
Analysiz Do 1

The analysis has been queued. You may follow itz progress using the spooler.

1 |

|The analysiz haz been successfully done

Using the Taskbar Icon

The PolySpace in One Click Taskbar icon allows you to access various
software features.

10-9

l 0 Day to Day Use

10-10

Set active project 3

Open active praject - New_Project

Yigwer

Launcher

£ & 7

Spooler
Help 3

Ezxit

[« |[]% B 431 pM

Click the PolySpace Taskbar Icon, then select one of the following options:

® Set active project — Allows you to set the active configuration file. Before
you start, you have to choose a PolySpace configuration file which contains
the common options. You can choose a template of a previous project and
move it to your working directory.

A standard file browser allows you to choose the configuration file. If you
have multiple configuration files, you can quickly switch between them
using the browse history.

) Browse .. | Set active project »
o i jeck - M Project
Zi\PalySpaceimy_project.cfg REM ACLvE project - Hew_Frojec
C\PolySpacelc_project,cfig | Yiewer
Ci\PolySpace\cpp_project.cfg E Launcher
Ci\PolySpaceinew_project.cfg E Spocler
Z:\PolySpaceloneclick. cfg Help »
Exit =

|“Iﬂ

Using PolySpace® In One Click

Note No configuration file is selected by default. You can create an empty
file with a .cfg extension.

Open active project — Opens the active configuration file. This allows
you to update the project using the standard PolySpace Launcher graphical
interface. It allows you to specify all PolySpace common options, including
directives of compilation, options, and paths of standard and specific
headers. It does not affect the precision of a verification or the results
directory.

Viewer — Opens the PolySpace viewer. This allows you to review
verification results in the standard graphical interface. In order to load
results into the viewer, you must choose a verification to review in the
Verification Log window.

Launcher — Opens the PolySpace Launcher. This allows you to launch a
verification using the standard PolySpace graphical interface.

Spooler — Opens the PolySpace Spooler. If you selected a server
verification in the “PolySpace Preferences” dialog box, the spooler allows
you to follow the status of the verification.

10-11

l 0 Day to Day Use

10-12

MISRA Checker

® “PolySpace MISRA Checker Overview” on page 11-2

¢ “Setting Up MISRA C Checking” on page 11-4

¢ “Running a Verification with MISRA C Checking” on page 11-10
e “Rules Supported” on page 11-14

e “Rules Partially Supported” on page 11-40

® “Rules Not Checked” on page 11-51

11 MISRA® Checker

PolySpace MISRA Checker Overview

PolySpace software can check that C code complies with MISRA C 2004
standards.!”

Note The PolySpace MISRA checker is based on MISRA C:2004
(http://www.misra-c.com).

The MISRA checker enables PolySpace software to provide messages when
MISRA C rules are not respected. Most messages are reported during the
compile phase of a verification. The MISRA checker can check nearly all of
the 141 MISRA C:2004 rules.

These 142 rules are divided in three categories:

® 102 required and advisory rules fully supported. PolySpace software can
check all these rules without any limitations. See “Rules Supported” on
page 11-14.

® 20 required and advisory rules partially supported. PolySpace software can
check all these rules with some limitations. These limitations are described
in the associated “Note” paragraph for each rule. See “Rules Partially
Supported” on page 11-40.

® 20 required and advisory rules which cannot be verified by PolySpace
software. These rules cannot be verified because they are outside the scope
of PolySpace verification. They may concern documentation, dynamic
aspects or functional aspects of MISRA rules. These rules are not checked.
The “comment” column details the reason. See “Rules Not Checked” on
page 11-51.

10. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-2

http://www.misra-c.com/

PolySpace® MISRA® Checker Overview

Note Every violation, warning or error, will be written in the log file at
compilation time of a PolySpace verification, except for rules 9.1 (NIV checks),
12.11 (OVFL check using -detect-unsigned-overflows), 13.7 (gray checks),
14.1 (gray checks), 16.2 (Call graph) and 21.1 (all runtime errors).

You will find a set of required and advisory MISRA rules in “Applying Coding
Rules to Reduce Orange Checks” on page 9-8 which can have direct or indirect
impact on the PolySpace selectivity (reliability percentage).

11-3

11 MISRA® Checker

Setting Up MISRA C Checking

114

In this section...

“Checking Compliance with MISRA C Coding Rules” on page 11-4
“Creating a MISRA C Rules File” on page 11-5
“Excluding Files from the MISRA C Checking” on page 11-7

“Configuring Text and XML Editors” on page 11-8

Checking Compliance with MISRA C Coding Rules

To check MISRA C compliance, you set an option in your project before
running a verification. PolySpace software finds the violations during the
compile phase of a verification. When you have addressed all MISRA C
violations, you run the verification again.

To set the MISRA C checking option:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

The Compliance with standards options appear.
2 Select the Check MISRA-C:2004 rules check box.
3 Expand the Check MISRA-C:2004 rules option.

Two options, Rules configuration and Files and directories to ignore,
appear.

Setting Up MISRA C® Checking

Marne Walue Irternal harme

L halysiz options

eneral
Target.l‘C-:umpilatil:un
I.J—]—Ccumpliance with standards

—Code fraomm DO or Windows filesystemn 7 -olos
F-Embedded assembler
H-Strict r strict
Permizzive I -PErtissive
f—]—Check MISRA-C: 2004 rules v

—Fules configuration ... |-mizra2

—Files and directaries to ignore ... fincludes-to-ignore
FHeillAR suppart defaut =) dislect

F-PolySpace inner settings
reu:isiu:un.l’Su:aIing
urt'rtasking

4 Specify which MISRA C rules to check and which, if any, files to exclude
from the checking.

Creating a MISRA C Rules File

You must have a rules file to run a verification with MISRA C checking.

Opening a New Rules File
To open a new rules file:

1 Click the button I_l to the right of the Rules configuration option.
A window for opening or creating a MISRA C rules file appears.
2 Select File > New File.

A table of rules appears.

11-5

11 MISRA® Checker

11-6

Rules Errar I WNarning Off

MISRA C rules

I—Numl::ner af rules by mode 7 1 134

Ervironnerit

2 Language extenszions

3 Documentation

Character zets

Identifiers

Types

I-' Constants

Declarations and definitions

Initiali=ation

0 Arithmetic type conversions

1 Painter type conversions

2 Exrezsions

3 Cantrol statement expressions

4 Cortrol flowy

5 Swyitch statements

f—]—’l B Functions
—16.1 Functionz shall nat be defined with variable numbers of arguments. f" - o
—16.2 Functions shall nat call themselves, either directly or indirectly. f" - o
—16.3 ldentifiers shall he given for all of the parameters in & function prototy o - f"
—16.4 The identifiers used in the declarstion and defintion of 2 function shall © 8 =
—16.2 Functions wvith ho parameters shall be declared with parameter type f" f" o
—16.6 The number of arguments passed to a function shall match the numbe f" f" o
—I16.7 & pointer parameter in a function protatype should be declared as poi f" « g
—16.5 Al exit paths from a function with non-void return type shall have an ¢ r ':H o
—16.9 & function identifier shall only be used with either a preceding & or f" f" o
—1 G610 If & function returns error information, then that error information sha © © g

=17 Pointer and arrays
—17.1 Pointer arithmetic shall only be applied to pointers that address an arrs © © g
—17.2 Pointer subtraction shall only be applied to pointers that address elems © © g
—17.3 =, == = == shal not be applied to pointer types except where they po © © g
—17.4 Array indexing shall be the only allowed form of poirter arithmetic. f" o f"
—17.5 The declaration of objects should contain no more than 2 levels of poi f" f" o
—17 6 The address of an ohject with automstic storage shall not be azsigne r i "

[+18 Structures and unions

9 Preprocessing directives

2IZI Standard libraries

[#-21 Rur-time failures

Setting Up MISRA C® Checking

3 For each rule, you specify one of these states:

State Causes the verification to...

Error End after the compile phase when
this rule is violated.

Warning Display warning message and
continue verification when this rule
1s violated.

Off Skip checking of this rule.

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

4 Click OK to save the rules and close the window.
The Save as dialog box opens.
5 In File, enter a name for the rules file.

6 Click OK to save the file and close the dialog box.

Excluding Files from the MISRA C Checking

You can exclude files from MISRA C checking. You might want to exclude
some included files. To exclude math.h from the MISRA C checking of the

project example.cfg:

1 Click the button I_I to the right of the Files and directories to ignore
option.

2 Click the folder icon.

=]

The Select a file or directory to include dialog box appears.

11-7

11 MISRA® Checker

11-8

3 Select the files or directories (such as include files) you want to ignore.
4 Click OK.
The selected files appear in the list of files to ignore.

5 Click OK to close the dialog box.

Configuring Text and XML Editors

Before you check MISRA rules, you should configure your text and XML
editors in the Viewer. Configuring text and XML editors in the Viewer allows
you to view source files and MISRA reports directly from the MISRA-C log in

the viewer.
To configure your text and . XML editors:
1 Select Edit > Preferences.
The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

Setting Up MISRA C® Checking

x

Toolz henu I Remnte | auncher
Miscelaneais I Rezult directory | Default directory i

Generic targets

~HML editar configuration

Specify the full psth to a XML editor or use the brawse buttan.

WML Editar: IC:'I.F‘ngram Filez"M=0tficelDifice! XEXCEL EXE _)l

~Text editar configuration

Specify the full path to a text editor ar use the browese button.

Text Edlitor: IC:'I.F‘ru:ugram FilesWindows NTWCcessoriesweordpad exe _)l

Specify the command line arguments for the text editor,

Arguments: I

The fallowing macros can be uzed FFILE, 3LIMNE, FCOLLIMN

Ol Apply Cancel

3 Specify an XML editor to use to view MISRA-C reports.
4 Specify a Text editor to use to view source files from the Viewer logs.

5 Click OK.

11-9

11 MISRA® Checker

Running a Verification with MISRA C Checking

In this section...

“Starting the Verification” on page 11-10
“Examining the MISRA C Log” on page 11-11
“Opening MISRA-C Report” on page 11-12

Starting the Verification

When you run a verification with the MISRA C option selected, the verification
checks most of the MISRA C rules during the compile phase.!?

Note Some rules address run-time errors.

The verification stops if there is a violation of a rule with state Error.

To start the verification:

. F Execute |
1 Click the Execute button .

2 If you see a caution that PolySpace software will remove existing results
from the results directory, click Yes to continue and close the message
dialog box.

If the verification fails because of MISRA C violations. A message dialog
box appears.

11. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the
MISRA Consortium.

11-10

Running a Verification with MISRA C® Checking

P

@ Werification process Failed

3 Click OK.

Examining the MISRA C Log
To examine the MISRA C violations:

1 Click the MISRA-C button in the log area of the Launcher window.

A list of MISRA C violations appear in the log part of the window.

ERROE : rule 16.3 (required) wiolated. At @ C:\po!
| identifiers shall be giwven for all of the
WARNING : rule 17.4 (required) wiolated. AL @ exar
| array indexing shall be the only allowed
WABNING : rule 17.4 (required) wiolated. AL @ exal
| array indexing shall be the only allowed

2 Click on any of the violations to see a description of the violated rule, the
full path of the file in which the violation was found, and the source code
containing the violation.

Search; 44 I 13 Fiter
A

incluce h

17 4 excatple.c o Bule: 16.35 (Error): Identifiers shall be giwven for all of the parameters in a
7.4 example.c 114 1]
174 [—— 113 0 File: C:%“Poly3pacespolyspace_projectiincludestinclude.h line 33 [column 0)

Source code

11-11

11 MISRA® Checker

In this example, the log reports a violation of rule 16.3. A function
prototype declaration in include.h is missing an identifier.

3 Right click the row containing the violation, then select Open Source File.

Status| Rule File: Line Col L_
i
17 4 Ewap %= Open Source File

17.4 e xamp Open MISRA-C Report
174 |examp wd Configure Edibar

The appropriate file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 11-8.

4 Correct the MISRA violation and run the verification again.

Opening MISRA-C Report
After you check MISRA rules, you can generate an XML report containing all
the errors and warnings reported by the MISRA-C checker.

Note You must configure an XML editor before you can open a MISRA-C
report. See “Configuring Text and XML Editors” on page 11-8.

To view the MISRA-C report:
1 Click the MISRA-C button in the log area of the Launcher window.
A list of MISRA C violations appear in the log part of the window.

2 Right click any row in the log, and select Open MISRA-C Report.

11-12

Running a Verification with MISRA C® Checking

u

S 74 J— %= Open Source File
T ONrTa4 Exatp Open MISRA-C Report
T 1174 examp & Configure Editor

The report opens in your XML editor.

|rc!?- (= R & Book2 - Microsoft Excel T =T =X
i — X X X
~ ‘ Home | Insert Page Layout Formulas Data Review View Add-Ins Acrobat Dresign @ - 7 X
I =
= &% SR =T = g2 Insert ~ E -
Calibri -lu - = | | Siwrap Text General -
B & _ i) At
Paste B I U- - - ~||= = ad Merge & Center % - o s [|%0) ;08| Conditional Format Cell y Sort & Find &

- “ 4 | = ” ” = | | BE oo | - | o -).u| Formatting = as Table = Styles = E‘_‘lFormat- A7 Filter~ Select™
Clipboard ™ Font F} Alignment [} Mumber [F} Styles Cells Editing |
Nameld ModeBalReportBllFile_____________________ BllineBlcoumnBImessage ___________

16.3 required error C:\PolySpace\polyspace_project\includes\include.h 33 0 | Identifiers shall be given for all of the parameters in a function prott

17.4 required warning example.c 97 0 | Array indexing shall be the only allowed form of pointer arithmetic.

17.4 required warning example.c 114 0 | Array indexing shall be the only allowed form of pointer arithmetic.

17.4 required warning example.c 118 0 | Array indexing shall be the only allowed form of pointer arithmetic.

M 4 b M| Sheetl Sheet? Sheets ¥ [m
Ready |

11-13

11 MISRA® Checker

Rules Supported

In this section...

“Language Extensions” on page 11-15
“Character Sets” on page 11-15

“Identifiers” on page 11-16

“Types” on page 11-17

“Constants” on page 11-17

“Declarations and Definitions” on page 11-18
“Initialization” on page 11-20

“Arithmetic Type Conversion” on page 11-20
“Pointer Type Conversion” on page 11-24
“Expressions” on page 11-25

“Control Statement Expressions” on page 11-28
“Control Flow” on page 11-29

“Switch Statements” on page 11-31
“Functions” on page 11-32

“Pointers and Arrays” on page 11-33
“Structures and Unions” on page 11-33
“Preprocessing Directives” on page 11-34
“Standard Libraries” on page 11-37

“runtime Failures” on page 11-39

11-14

Rules Supported

Language Extensions

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
2.2 source code shall only use /* | C++ comments shall not be | C++ comments are handled
*/ style comments used. as comments but lead to a
violation of this MISRA rule
2.3 The character sequence /* The character sequence /* This rule violation is also
shall not be used within a shall not appear within a raised when the character
comment comment. sequence /* inside a C++
comment.
Character Sets
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
4.1 Only those escape sequences | \<character> is not an ISO
which are defined in the C escape sequence
ISO® C standard shall be Only those escape
used. sequences which are defined
in the ISO C standard shall
be used.
4.2 Trigraphs shall not be used. | Trigraphs shall not be used. | Trigraphs are handled and

converted to the equivalent
character but lead to a
violation of the MISRA rule

11-15

11 MISRA® Checker

Identifiers
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

5.2 Identifiers in an inner scope | ® Local declaration of XX is | Assumes that rule 8.1 is not
shall not use the same name hiding another identifier. | violated.
as an identifier in an outer .

. ¢ Declaration of parameter
scope, and therefore hide R
that identifier. XX 18 i ching amelbes
identifier.

5.3 A typedef name shall be a { typedef name }’%s’ should | Warning when a typedef

unique identifier not be reused. (already name is reused as another
used as { typedef name } at | identifier name.
%s:%d)

5.4 A tag name shall be a {tag name }’%s’ should not | warning when a tag name is

unique identifier be reused. (already used as | reused as another identifier
{tag name } at %s:%d) name

5.5 No object or function { static identifier/parameter | warning when a static
identifier with a static name }'%s’ should not be name is reused as another
storage duration should be | reused. (already used as { | identifier name
reused. static identifier/parameter

name } at %s:%d)

5.6 No identifier in one name {member name }'%s’ should | warning when a idf in a
space should have the same | not be reused. (already namespace is reused in
spelling as an identifier in | used as { member name } at | another namespace
another name space, with %s:%d)
the exception of structure
and union member names.

5.7 No identifier name should {identifier}'%s’ should not warning on other conflicts

be reused.

be reused. (already used as
{identifier} at %s:%d)

(including member names)

11-16

Rules Supported

Types
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
6.1 The plain char type shall Only permissible operators | There is a warning when a
be used only for the storage | on plain chars are’=",’=="or | plain char is used with an
and use of character values | ’!'=" operators. operator other than =, == or
1=
6.3 typedefs that indicate size typedefs that indicate size | No warning is given in
and signedness should be and signedness should be typedef definition. There is
used 1n place of the basic used in place of the basic no exception on bitfields.
types types.
6.4 Bit fields shall only be Bit fields shall only be
defined to be of type defined to be of type
unsigned int or signed int. unsigned int or signed int.
6.5 Bit fields of type signed int | Bit fields of type signed int | No warning on anonymous
shall be at least 2 bits long. | shall be at least 2 bits long. | signed int bitfields of width
0 - Extended to all signed
bitfields of size <=1 (if Rule
6.4 is violated).
Constants
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
7.1 Octal constants (other ® (QOctal constants other

than zero) and octal escape

sequences shall not be used.

than zero and octal
escape sequences shall
not be used.

® QOctal constants (other
than zero) should not be
used.

® (Qctal escape sequences
should not be used.

11-17

11 MISRA® Checker

Declarations and Definitions

MISRA Definition

Messages in log file

Detailed PolySpace
Specification

8.1

Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

¢ Function XX has no
complete prototype
visible at call.

® Function XX has no
prototype visible at
definition.

Prototype visible at call
must be complete.

8.2

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.4

If objects or functions
are declared more than
once their types shall be
compatible.

e [f objects or functions
are declared more than
once their types shall be
compatible.

® Global declaration
of XX’ function has
incompatible type with
its definition.

® Global declaration
of XX’ variable has
incompatible type with
its definition.

During link phase, errors
are converted into warnings
with -permissive-1link
option.

Cannot be turned Off.

8.5

There shall be no definitions
of objects or functions in a
header file

¢ Object XX’ should not be
defined in a header file.

¢ Function XX’ should not
be defined in a header
file.

Tentative of definitions are
considered as definitions.

11-18

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
8.6 Functions shall always be Function XX’ should be
declared at file scope. declared at file scope.
8.9 Definition: An identifier Tentative of definitions
with external linkage shall | ® Procedure/Global are considered as
have exactly one external variable XX multiply definitions, No warning
definition. defined. on undefined objects with
e Forbidden multiple L (B - AL
. ”» option, No warning on
tentative of definition for defined bol
object XX. predefined symbols.
® Global variable has
multiples tentative of
definitions
8.10 All declarations and Function/Variable XX Not checked if
definitions of objects or should have internal -main-generator option is
functions at file scope shall | linkage. set. Assumes that 8.1 is not
have internal linkage unless violated. No warning if 0
external linkage is required uses.
8.11 The static storage class static storage class specifier
specifier shall be used in should be used on internal
definitions and declarations | linkage symbol XX.
of objects and functions that
have internal linkage
8.12 When an array is declared | Array XX has unknown

with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

size.

11-19

11 MISRA® Checker

Initialization
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
9.1 All automatic variables Done by PolySpace (NIV
shall have been assigned a Checks).
value before being used. Cannot be Off.
9.2 Braces shall be used to Braces shall be used to
indicate and match the indicate and match the
structure in the nonzero structure in the nonzero
initialization of arrays and | initialization of arrays and
structures. structures.
9.3 In an enumerator list, the In an enumerator list, the
= construct shall not be = construct shall not be
used to explicitly initialize | used to explicitly initialize
members other than the members other than the
first, unless all items are first, unless all items are
explicitly initialized. explicitly initialized.
Arithmetic Type Conversion
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
10.1 The value of an expression

11-20

of integer type shall not be
implicitly converted to a
different underlying type if:

® it is not a conversion to a
wider integer type of the
same signedness, or

® the expression is complex,
or

® the expression is not
constant and is a function
argument, or

e Implicit conversion
of the expression of
underlying type ?? to
the type ?? that is not a
wider integer type of the
same signedness.

¢ Implicit conversion of one
of the binary operands
whose underlying types
are ?? and ??

e Implicit conversion of
the binary right hand

1 ANSI C base types order
(signed char, short, int,
long) defines that T2 is
wider than T1 if T2 is
on the right hand of T1
or T2 = T1. The same
interpretation is applied
on the unsigned version
of base types.

2 An expression of bool or
enum types has int as
underlying type.

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
. operand of underlying
b cxmasin 220 | e % 107 thatia ot | 3 Pl char may e
. an integer type. signed or unsigned
éxpression o _ underlying type
¢ Implicit conversion of the (depending on PolySpace
binary left hand operand target configuration or
of underlying type ?? to option setting).
?? that is not an integer
type. 4 The underlying type
e Implicit conversion of of a simple? exprgssion
the binary right hand of struct.bltﬁeld. is the
operand of underlying base type used in the
type ?? to ?? that is not b?tﬁeld dgﬁmtl.on, the
a wider integer type of bitfield width is not
the same signedness or token into account a.nd it
Implicit conversion of assumes that only signed
the binary ? left hand | un§1gned int are used
operand of underlying for bitfield (Rule 6.4).
type ?? to ??, but it is a
complex expression.
10.1 ¢ Implicit conversion
(cont.) of complex integer

expression of underlying
type ?? to ??.

¢ Implicit conversion of
non-constant integer
expression of underlying
type ?? in function return

whose expected type is
29

¢ Implicit conversion of
non-constant integer
expression of underlying
type ?? as argument
of function whose

11-21

11 MISRA® Checker

11-22

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
corresponding parameter
type is ??.
10.2 The value of an expression ANSI C base types order

of floating type shall not

be implicitly converted to a

different type if

® it is not a conversion to a

wider floating type, or

® the expression is complex,

or

® the expression is a
function argument, or

® the expression is a return

expression

Implicit conversion of
the expression from ??
to ?? that is not a wider
floating type.

Implicit conversion of
the binary ? right hand
operand from ?? to

??, but it is a complex
expression.

Implicit conversion of
the binary ? right hand
operand from ?? to

?? that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from ??
to ??, but it is a complex
expression.

Implicit conversion
of complex floating
expression from ?? to ??.

Implicit conversion of
floating expression of ??
type in function return

whose expected type is
29

Implicit conversion of
floating expression of
?? type as argument
of function whose

(float, double) defines that
T2 is wider than T1 if T2 is
on the right hand of T1 or
T2 =T1.

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
corresponding parameter
type is ??.
10.3 The value of a complex Complex ppliedta of

expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

underlying type ?? may
only be cast to narrower
integer type of same
signedness, however the
destination type is ??.

e ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
ppliedtation is applied on
the unsigned version of
base types.

® An expression of bool or
enum types has int as
underlying type.

¢ Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

¢ The underlying type
of a simple expression
of struct.bitfield is the
base type used in
the bitfield definition,
the bitfield width is
not token into account
and it assumes that only
signed, unsigned int are
used for bitfield (Rule
6.4).

11-23

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
10.4 The value of a complex Complex expression of ?? ANSI C base types order
expression of float type may | type may only be cast to (float, double) defines that
only be cast to narrower narrower floating type, T1 is narrower than T2 if
floating type however the destination T2 is on the right hand of
type is ??. T1 or T2 = T1.
10.5 If the bitwise operator ~ and | Bitwise [<<|~] is applied
<< are applied to an operand | to the operand of
of underlying type unsigned | underlying type [unsigned
char or unsigned short, the | char|unsigned short], the
result shall be immediately | result shall be immediately
cast to the underlying type | cast to the underlying type.
of the operand
10.6 The “U” suffix shall be No explicit ‘U suffix on
applied to all constants of constants of an unsigned
unsigned types type.
Pointer Type Conversion
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
11.1 Conversion shall not be Conversion shall not be Casts and implicit
performed between a performed between a conversions involving a
pointer to a function and pointer to a function and function pointer
any type other than an any type other than an
integral type integral type.
11.2 Conversion shall not be Conversion shall not be There is also a warning on

performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void

performed between a
pointer to an object and any
type other than an integral
type, another pointer to a
object type or a pointer to
void.

qualifier loss

11-24

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
11.3 A cast should not be A cast should not be Exception on zero constant.
performed between a performed between a Extended to all conversions
pointer type and an integral | pointer type and an integral
type type.
11.4 A cast should not be A cast should not be Extended to all conversions
performed between a performed between a
pointer to object type and pointer to object type and a
a different pointer to object | different pointer to object
type. type.
11.5 A cast shall not be A cast shall not be Extended to all conversions
performed that removes performed that removes
any const or volatile any const or volatile
qualification from the qualification from the
type addressed by a pointer | type addressed by a pointer
Expressions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.1 Limited dependence Limited dependence
should be placed on C’s should be placed on C’s
operator precedence rules operator precedence rules
in expressions in expressions
12.3 The sizeof operator should | he size of operator should No warning on volatile
not be used on expressions | not be used on expressions | accesses and function calls
that contain side effects. that contain side effects.
12.4 The right hand operand of | The right hand operand of | No warning on volatile

a logical && or | | operator
shall not contain side
effects.

a logical && or | | operator
shall not contain side
effects.

accesses and function calls.

11-25

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.5 The operands of a logical During preprocessing,
&& or || shall be ¢ operand of logical && is | violations of this rule are
primary-expressions. not a primary expression | detected on the expressions
o e of logreal [9 in #if directives.
not a primary expression | Allowed exception on
¢ The operands of a logical ?sslo I(:ll?tllvlelz (@a&&b &&c),
&& or | | shall be . ok
primary-expressions.
12.6 Operands of logical "the operand of a logical

operators (&&, | | and

1) should be effectively
Boolean. Expression that
are effectively Boolean
should not be used as
operands to operators other
than (&&, | | or!).

® Operand of ’!" logical
operator should be
effectively Boolean. Left
operand of '%s’ logical
operator should be
effectively Boolean.

¢ Right operand of "%s’
logical operator should
be effectively Boolean.

® Boolean should not be
used as operands to
operators other than

’&&7, al |,OI' 7!a'

operator should be a
Boolean". As there are no
Boolean in "C" but as the
standard assumes it, some
operator return Boolean
like expression (var == 0).
Example:

unsigned char flag; if
(!flag) raises the rule:
the operand of "!" 1s "flag".
And "flag" is not a Boolean
but an unsigned char.

To be 12.6 MISRA
compliant, the code need to
be written like this:

if (!(flag != 0))
or if (flag == 0)

11-26

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
12.7 Bitwise operators shall The underlying type for
not be applied to operands | ® [~/Left Shift/Right an integer used in a
whose underlying type is shift/&] operator applied | re-processor expression is
signed on an expression whose | signed when :
underlying type is signed.
O Bithte = om cpemml of ® it does not have auor U
. . suffix
signed underlying type
?72. ® it is small enough to
e fit 1nkt)o a 64 bits signed
hand operand of signed number
underlying type ??.
* Bitwise [& | 7] on two
operands of s
12.8 The right hand operand of The numbers that

a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

¢ shift amount is negative

¢ shift amount is bigger
than 64

* Bitwise [<<>>] count out
of range [0 ..X] (width of
the underlying type ?? of
the left hand operand -
1)..

are manipulated in
preprocessing directives
are 64 bits wide so that
valid shift range is between
0 and 63

Check 1s also extended onto
bitfields with the field width
or the width of the base type
when it is within a complex
expression

11-27

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

12.9 The unary minus operator The underlying type for
shall not be applied to ¢ Unary - on operand of an integer used in a
an expression whose unsigned underlying type | re-processor expression is
underlying type is unsigned. 7. signed when:

e Mi t lied .
R S ¢ it does not have auor U
to an expression whose
. . suffix

underlying type is

unsigned ¢ it is small enough to
fit into a 64 bits signed
number

12.10 | The comma operator shall | The comma operator shall
not be used. not be used.

12.13 | The increment (++) and The increment (++) and warning when ++ or —
decrement (—) operators decrement (-) operators operators are not used
should not be mixed with should not be mixed with alone.
other operators in an other operators in an
expression expression

Control Statement Expressions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
13.1 Assignment operators shall | Assignment operators shall

not be used in expressions
that yield Boolean values.

not be used in expressions
that yield Boolean values.

11-28

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
13.2 Tests of a value against zero | Tests of a value against zero | No warning is given on
should be made explicit, should be made explicit, integer constants. Example:
unless the operand is unless the operand is if (2)
effectively Boolean effectively Boolean
13.7 Boolean operations whose Boolean operator '%s’ Done by PolySpace (gray
results are invariant shall | should not have invariant Checks). It is also checked
not be permitted result. (Result is always during compilation on
‘true/false’). comparison between with a
least one constant operand.
Cannot be Off.
Control Flow
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
14.1 There shall be no Done by PolySpace (gray
unreachable code. checks).
Cannot be Off.
14.2 All non-null statements
shall either have at lest e All non-null statements
one side effect however shall either:
gxem;ted},1 or cause control e have at lest one side
ow to change effect however executed,
or
e cause control flow to
change
14.4 The goto statement shall The goto statement shall
not be used. not be used.
14.5 The continue statement The continue statement

shall not be used.

shall not be used.

11-29

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
14.6 For any iteration statement | For any iteration statement
there shall be at most one there shall be at most one
break statement used for break statement used for
loop termination loop termination
14.7 A function shall have a A function shall have a
single point of exit at the single point of exit at the
end of the function end of the function
14.8 The statement forming the
body of a switch, while, do ¢ The body of a do while
while or for statement shall statement shall be a
be a compound statement compound statement.
¢ The body of a for
statement shall be a
compound statement.
¢ The body of a switch
statement shall be a
compound statement
14.9 An if (expression) construct
shall be followed by a ¢ An if (expression)
compound statement. construct shall be
The else keyword shall followed by a compound
be followed by either a statement.
comtp}f) un.(; S;E attemeng: » or ® The else keyword shall
another iy statemen be followed by either a
compound statement, or
another if statement
14.10 | All if else if constructs All if else if constructs

should contain a final else
clause.

should contain a final else
clause.

11-30

Rules Supported

Switch Statements

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
15.0 Unreachable code is switch statements syntax On the following example,
detected between switch normative restrictions. the rule is displayed in the
statement and first case. log file at line 3:
1 ...
Note this is not a MISRA 2 switch(index) {
C2004 rule. 3 var = var + 1;
// RULE 15.0
// violated
4 case 1:
The code between switch
statement and first case
1s checked as gray by
PolySpace verification. It
follows ANSI standard
behavior.
15.1 A switch label shall only A switch label shall only
be used when the most be used when the most
closely-enclosing compound | closely-enclosing compound
statement is the body of a statement is the body of a
switch statement switch statement
15.2 An unconditional break An unconditional break
statement shall terminate | statement shall terminate
every non-empty switch every non-empty switch
clause clause
15.3 The final clause of a switch | The final clause of a switch

statement shall be the
default clause

statement shall be the
default clause

11-31

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

15.4 A switch expression should | A switch expression should
not represent a value that | not represent a value that
is effectively Boolean is effectively Boolean

15.5 Every switch statement Every switch statement
shall have at least one case | shall have at least one case
clause clause

Functions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification

16.1 Functions shall not be Function XX should not be
defined with variable defined as varargs.
numbers of arguments.

16.2 Functions shall not call Function %s should not call | Done by PolySpace software
themselves, either directly | itself. (Call graph in the viewer
or indirectly. gives the information).

PolySpace verification also
checks that partially during
compilation phase.

Cannot be Off.

16.3 Identifiers shall be given Identifiers shall be given Assumes Rule 8.6 is not
for all of the parameters for all of the parameters violated.
in a function prototype in a function prototype
declaration. declaration.

16.5 Functions with no Functions with no Definitions are also

parameters shall be
declared with parameter
type void.

parameters shall be
declared with parameter
type void.

checked.

11-32

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
16.8 All exit paths from a Missing return value for Warning when a non-void
function with non-void non-void function XX. function is not terminated
return type shall have an with an unconditional
explicit return statement return with an expression.
with an expression.
16.9 A function identifier shall Function identifier XX
only be used with either should be preceded by a &
a preceding &, or with a or followed by a parameter
parenthesized parameter list.
list, which may be empty.
Pointers and Arrays
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
17.5 A type should not contain A type should not contain
more than 2 levels of pointer | more than 2 levels of pointer
indirection indirection
Structures and Unions
N. MISRA Definition Messages in log file Detailed PolySpace
Specification
18.1 All structure or union types | All structure or union types
shall be complete at the end | shall be complete at the end
of a translation unit. of a translation unit.
18.4 Unions shall not be used Unions shall not be used.

11-33

11 MISRA® Checker

Preprocessing Directives

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.1 #include statements in a A message is displayed
file shall only be preceded when a #include directive
by other preprocessors is preceded by other
directives or comments things than preprocessor
directives, comments,
spaces or “new lines”.
19.2 Nonstandard characters
should not occur in header | ® A message is displayed
file names in #include on characters’, \, " or
directives /* between < and > in
#include <filename>
* A message is displayed
on characters ’, \or
/* between " and " in
#include "filename"
19.3 The #include directive shall Cannot be Off.
be followed by either a ® ‘“#include’ expects
<filename> or "filename" "FILENAME" or
sequence. <FILENAME>
e ‘“Hinclude_next’ expects
"FILENAME" or
<FILENAME>
19.5 Macros shall not be #defined
and #undefd within a block. | ® Macros shall not be
#defined within a block.
® Macros shall not be
#undefd within a block.
19.6 #undef shall not be used. #undef shall not be used.

11-34

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.7 A function should be used | Message on all function-like
in preference to a function | macros expansions
like-macro.
19.8 A function-like macro shall Cannot be Off.
not be invoked without all ® arguments given to
of its arguments macro ‘<name>’
® macro ‘<name> used
without args.
® macro ‘<name> used
with just one arg.
® macro ‘<name>’
used with too many
(<number>) args.
19.9 Arguments to a Macro argument shall not This rule 1s detected as
function-like macro shall look like a preprocessing violated when the #
not contain tokens that directive. character appears in a
look like preprocessing macro argument (outside
directives. a string or character
constant)
19.10 | In the definition of a Parameter instance shall be
function-like macro each enclosed in parentheses.
Instance of a parameter
shall be enclosed in
parentheses unless it is
used as the operand of # or
1t
19.11 | All macro identifiers in ‘<name>’ is not defined.

preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

11-35

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
19.12 | There shall be at most one | More than one occurrence
occurrence of the # or ## of the # or ## preprocessor
preprocessor operators in a | operators.
single macro definition.
19.13 | The # and ## preprocessor | Message on definitions
operators should not be of macros using # or ##
used operators
19.14 | The defined preprocessor ‘defined’ without an Cannot be Off.
operator shall only be used | identifier.
in one of the two standard
forms.
19.16 | Preprocessing directives directive is not syntactically
shall be syntactically meaningful.
meaningful even
when excluded by the
preprocessor.
19.17 | All #else, #elif and #endif Cannot be Off.

preprocessor directives
shall reside in the same file
as the #if or #ifdef directive
to which they are related.

e ‘Helif’ not within a
conditional.

e ‘Helse’ not within a
conditional.

e ‘Helif’ not within a
conditional.

e ‘#endif not within a
conditional.

e unbalanced #endif’.

® unterminated #if’
conditional.

* unterminated #ifdef’
conditional.

* unterminated #ifndef’
conditional.

11-36

Rules Supported

Standard Libraries

N. MISRA Definition Messages in log file Detailed PolySpace
Specification

20.1 Reserved i1dentifiers,
macros and functions in ® The macro ‘<name> shall
the standard library, shall not be redefined.
notd bg deéined, redefined or | | The macro ‘<name> shall
undehined. not be undefined.

20.2 The names of standard Identifier XX should not be | In case a macro whose name
library macros, objects used. corresponds to a standard
and functions shall not be library macro, object or
reused. function is defined, the

rule that is detected as
violated i1s 20.1. Tentative
of definitions are considered
as definitions.

20.4 Dynamic heap memory In case the dynamic heap
allocation shall not be used. | ® The macro ‘<name> shall | memory allocation functions

not be used. are actually macros and the
e Identifier XX should not | M&cr0 18 expar}ded i e
be used code, this rule is detected as
) violated. Assumes rule 20.2
is not violated.

20.5 The error indicator errno The error indicator errno Assumes that rule 20.2 is
shall not be used shall not be used not violated

20.6 The macro offsetof, in Assumes that rule 20.2 is

library <stddef.h>, shall not
be used.

¢ The macro ‘<name> shall
not be used.

e Jdentifier XX should not
be used.

not violated

11-37

11 MISRA® Checker

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
20.7 The setjmp macro and the In case the longjmp function
longjmp function shall not | ® The macro ‘<name> shall | is actually a macro and the
be used. not be used. macro is expanded in the
e Tdentifier XX should not code, this rule is detected as
be used violated. Assumes that rule
’ 20.2 is not violated
20.8 The signal handling In case some of the signal
facilities of <signal.h> ¢ The macro ‘<name> shall | functions are actually
shall not be used. not be used. macros and are expanded
e Identifier XX should not | ™ e il thl?’ G0l
be used is detected as violated.
’ Assumes that rule 20.2 is
not violated
20.9 The input/output library In case the input/output
<stdio.h> shall not be used | ® The macro ‘<name> shall | library functions are
in production code. not be used. actually macros and are
¢ [dentifier XX should not expapded i {513 cod.e, s
be used rule is detected as violated.
) Assumes that rule 20.2 is
not violated
20.10 | The library functions atof, In case the atof, atoi and

atoi and toll from library
<stdlib.h> shall not be used.

¢ The macro ‘<name> shall
not be used.

e Jdentifier XX should not
be used.

atoll functions are actually
macros and are expanded,
this rule is detected as
violated. Assumes that rule
20.2 is not violated

11-38

Rules Supported

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
20.11 | The library functions abort, In case the abort, exit,
exit, getenv and system ® The macro ‘<name> shall | getenv and system functions
from library <stdlib.h> not be used. are actually macros and

shall not be used. e Tdentifier XX should not | &Y€ expanded, this rule

is detected as violated.

b d. .
© use Assumes that rule 20.2 is
not violated
20.12 | The time handling functions In case the time handling
of library <time.h> shall not | ® The macro ‘<name> shall | functions are actually
be used. not be used. macros and are expanded,

O Tidlem e SOR caeuildl me thls rule is detected as
be used. violated. Assumes that rule

20.2 is not violated

runtime Failures

N. MISRA Definition Messages in log file Detailed PolySpace
Specification
21.1 Minimization of runtime Done by PolySpace (runtime
failures shall be ensured by error checks).
the use of at least one of: Cannot be Off.

e gstatic verification
tools/techniques;

¢ dynamic verification
tools/techniques;

e explicit coding of checks
to handle runtime faults.

11-39

11 MISRA® Checker

Rules Partially Supported

In this section...

“Environment” on page 11-40

“Language Extension” on page 11-41
“Identifier” on page 11-42

“Declarations and Definitions” on page 11-42
“Expressions” on page 11-43

“Control Statement Expressions” on page 11-45
“Control Flow” on page 11-46

“Functions” on page 11-47

“Pointers and Arrays” on page 11-48

“Preprocessing Directives” on page 11-49

Environment
Rule Description
1.1 All code shall conform to ISO 9899:1990 “Programming

(Required) languages - C”, amended and corrected by ISO/IEC
9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

Messages in log:

e ANSI C does not allow #include_next’

e ANSI C does not allow macros with variable arguments list
e ANSI C does not allow #assert’

e ANSI C does not allow#unassert’

e ANSI C does not allow testing assertions

e ANSI C does not allow #ident’

e ANSI C does not allow #sccs’

11-40

Rules Partially Supported

Description

¢ text following #else’ violates ANSI standard.

¢ text following #endif’ violates ANSI standard.

¢ text following #else’ or #endif violates ANSI standard.
e ANSI C90 forbids ’long long int’ type.
e ANSI C90 forbids 'long double’ type.

e ANSI C90 forbids long long integer constants.

¢ Keyword ’inline’ should not be used.

e Array of zero size should not be used.

¢ Integer constant does not fit within unsigned long int.

¢ Integer constant does not fit within long int.

Note All the supported extensions lead to a violation of this MISRA rule.
Standard compilation error messages do not lead to a violation of this
MISRA rule and remain unchanged. Can be turned to Off (see -misra2

option).

Language Extension

Rule Description
2.1 Assembly language shall be encapsulated and isolated.
(Required)

11-41

11 MISRA® Checker

Rule Description

Message in log:

* Assembly language shall be encapsulated and isolated.

Note no warnings if code is encapsulated in asm functions or in asm
pragma (only warning is given on asm statements even if it is encapsulated
by a MACRO). Can be turned to Off.

Identifier
Rule Description
5.1 Identifiers (internal and external) shall not rely on the
(Required) significance of more than 31 characters

Message in log:

¢ Identifier XX’ should not rely on the significance of more than 31
characters.

Note Only global variables (external linkage) are checked. Can be turned
to Off

Declarations and Definitions

Rule Description

8.3 For each function parameter the type given in the

(Required) declaration and definition shall be identical, and the return
types shall also be identical.

11-42

Rules Partially Supported

Rule Description

Message in log:

® Definition of function 'XX’ incompatible with its declaration.

Note Assumes that rule 8.1 is not violated. The rule is restricted to
compatible types. Can be turned to Off

8.7 Objects shall be defined at block scope if they are only
(Required) accessed from within a single function

Message in log:

® Object XX’ should be declared at block scope.

Note Restricted to static objects. Can be turned to Off

8.8 An external object or function shall be declared in one file
(Required) and only one file

Message in log:
® Function/Object 'XX’ has external declarations in multiples files.

Note Restricted to explicit extern declarations (tentative of definitions
are ignored). Can be turned to Off

Expressions
Rule Description
12.2 The value of an expression shall be the same under any
(Required) order of evaluation that the standard permits.

11-43

11 MISRA® Checker

11-44

Rule Description

Messages in log:

¢ The value of ‘sym’ depends on the order of evaluation.

® The value of volatile ‘sym’ depends on the order of evaluation because
of multiple accesses.

Note The expression is a simple expression of symbols (Unlike 1 = i++;
no detection on tab[2] = tab[2]++;). Rule 12.2 check assumes that no
assignment in expressions that yield a Boolean values (rule 13.1) and the
comma operator is not used (rule 12.10). Can be turned to Off.

12.11 Evaluation of constant unsigned expression should not lead
(Advisory) to wraparound.

No message.

Note This rule is partially implemented with the
-detect-unsigned-overflows option in PolySpace software. Concerning
possible preprocessing overflows, PolySpace preprocessor does not take
into account target basic types and considers always 32-Bit long int.
Cannot be ticked.

12.12 The underlying bit representations of floating-point values
(Required) shall not be used.

Message in log:
® The underlying bit representations of floating-point values shall not be
used.

Note Warning on casts with float pointers (excepted with void *). Can
be turned to Off.

Rules Partially Supported

Control Statement Expressions

Rule Description

13.3 Floating-point expressions shall not be tested for equality
(Required) or inequality.

Message in log:

¢ Floating-point expressions shall not be tested for equality or inequality.

Note Warning on directs tests only. Can be turned to Off.

13.4 The controlling expression of a for statement shall not
(Required) contain any objects of floating type

Message in log:

® The controlling expression of a for statement shall not contain any
objects of floating type

Note If for index is a variable symbol, checked that it is not a float. Can
be turned to Off.

13.5 The three expressions of a for statement shall be concerned
(Required) only with loop control

Messages in log:
® 1st expression should be an assignment.

Bad type for loop counter (XX).
® 2nd expression should be a comparison.

® 2nd expression should be a comparison with loop counter (XX).

3rd expression should be an assignment of loop counter (XX).

3rd expression: assigned variable should be the loop counter (XX).

11-45

11 MISRA® Checker

11-46

Description

Note Checked

if the for loop index (V) is a variable symbol; checked if V is

the last assigned variable in the first expression (if present). Checked if, in

first expression

, if present, is assignment of V; checked if in 2nd expression,

if present, must be a comparison of V; Checked if in 3rd expression, if
present, must be an assignment of V. Can be turned to Off.

13.6
(Required)

Numeric variables being used within a for loop for iteration
counting should not be modified in the body of the loop.

Message in log:

® Numeric variables being used within a for loop for iteration counting
should not be modified in the body of the loop.

Note Detect only direct assignments if the for loop index is known and
if it 1s a variable symbol. Can be turned to Off.

Control Flow

Rule Description
14.3 All non-null statements shall either
(Required)

® have at lest one side effect however executed, or

e cause control flow to change

Rules Partially Supported

Rule Description

Message in log:

® A null statement shall appear on a line by itself

Note We assume that a’;’ is a null statement when it is the first character
on a line (excluding comments). The rule is violated when:

® there are some comments before it on the same line.
® there is a comment immediately after it

® there is something else than a comment after the ’;’ on the same line.

Can be turned to Off.

Functions
Rule Description
16.4 The identifiers used in the declaration and definition of a
(Required) function shall be identical.

Message in log:

® The identifiers used in the declaration and definition of a function shall
be identical.

Note Assumes that rules 8.8, 8.1 and 16.3 are not violated. Can be turned
to Off.

16.6 The number of arguments passed to a function shall match
Required) the number of parameters.

11-47

11 MISRA® Checker

Description

Messages in log:
® Too many arguments to XX.

¢ Insufficient number of arguments to XX.

Note Assumes that rule 8.1 is not violated. Can be turned to Off.

Pointers and Arrays

Description

17.4
(Required)

Array indexing shall be the only allowed form of pointer
arithmetic.

Message in log:

® Array indexing shall be the only allowed form of pointer arithmetic.

Note Warning on operations on pointers. (p+I, I+p and p-I, where p is a
pointer and I an integer). Can be turned to Off.

17.6
(Required)

The address of an object with automatic storage shall not be
assigned to an object that may persist after the object has
ceased to exist.

Message in log:
® Pointer to a parameter is an illegal return value. Pointer to a local is an
illegal return value.

Note Warning when returning a local variable address or a parameter
address. Can be turned to Off.

11-48

Rules Partially Supported

Preprocessing Directives

Rule Description

19.4 C macros shall only expand to a braced initializer, a

(Required) constant, a parenthesized expression, a type qualifier, a
storage class specifier, or a do-while-zero construct.

Message in log:

® Macro ‘<name>" does not expand to a compliant construct.

Note We assume that a macro definition does not violate this rule when it
expands to:

® a braced construct (not necessarily an initializer)

® a parenthesized construct (not necessarily an expression)

® a number

® a character constant

® a string constant (can be the result of the concatenation of string field
arguments and literal strings)

¢ the following keywords: typedef, extern, static, auto, register, const,
volatile, __asm__and __inline__

® a do-while-zero construct

Can be turned to Off.

19.15 Precautions shall be taken in order to prevent the contents
(Required) of a header file being included twice.

11-49

11 MISRA® Checker

11-50

Rule Description

Message in log:
® Precautions shall be taken in order to prevent multiple inclusions.

Note When a header file is formatted as follows:

#ifndef <control macro>
#define <control macro>
<contents>

#endif

It is assumed that precautions have been taken to prevent multiple
inclusions. Otherwise, a violation of this MISRA rule is detected.

Can be turned to Off.

Rules Not Checked

Rules Not Checked

In this section...

“Environment” on page 11-51
“Language Extensions” on page 11-52
“Documentation” on page 11-52
“Types” on page 11-53

“Functions” on page 11-54

“Pointers and Arrays” on page 11-54
“Structures and Unions” on page 11-55

“Standard Libraries” on page 11-55

Environment
Rule Description Comments
1.2 No reliance shall be placed Not statically checkable
(Required) | on undefined or unspecified unless the data dynamic
behavior properties is taken into
account
1.3 Multiple compilers and/or It is a process rule method.
(Required) | languages shall only be

used if there is a common
defined interface standard

for object code to which the
language/compilers/assemblers

conform.

11-51

11 MISRA® Checker

Description

Comments

1.4
(Required)

The
compiler/linker/Identifiers
(internal and external)
shall not rely on
significance of more than
31 characters. Furthermore
the compiler/linker shall be
checked to ensure that 31
character significance and
case sensitivity are supported
for external identifiers.

The documentation of
compiler must be checked.

1.5
(Advisory)

Floating point
implementations should
comply with a defined floating
point standard.

The documentation of
compiler must be checked as
this implementation is done
by the compiler

Language Extensions

Rule Description Comments

2.4 Sections of code should not be | It might be some pseudo code

(Advisory) | “commented out” or code that does not compile

inside a comment.

Documentation

Rule Description Comments

3.1 All usage of The documentation of

(Required) | implementation-defined compiler must be checked.

11-52

behavior shall be documented.

Error detection is based
on undefined behavior,
according to choices made
for implementation-
defined constructions.

Rules Not Checked

Rule Description Comments
Documentation can not
be checked.

3.2 The character set and the The documentation of

(Required) | corresponding encoding shall | compiler must be checked.

be documented.

3.3 The implementation of The documentation of

(Advisory) | integer division in the compiler must be checked.

chosen compiler should be
determined, documented and
taken into account.

3.4 All uses of the #pragma The documentation of

(Required) | directive shall be documented | compiler must be checked.

and explained.

3.5 The implementation-defined The documentation of

(Required) | behavior and packing of compiler must be checked.

bitfields shall be documented
if being relied upon.

3.6 All libraries used in The documentation of

(Required) | production code shall be compiler must be checked.

written to comply with the

provisions of this document,

and shall have been subject to

appropriate validation.
Types

Rule Description Comments

6.2 Signed and unsigned char Consider an external function

(Required) | type shall be used only for the | returning a char is been used

storage and use of numeric
values.

and increased. There is no
mean without the functional

11-53

11 MISRA® Checker

11-54

Rule Description Comments
knowledge that this function
stores a character value or
Note this rule is partially not.
implemented in Rule 6.1.
Functions
Rule Description Comments
16.7 A pointer parameter in a Not statically checkable
(Advisory) | function prototype should be | unless the pointer verification
declared as pointer to const has been done.
if the pointer is not used to
modify the addressed object.
16.10 If a function returns error Not statically checkable
(Required) | information, then that error unless type defining error is

information shall be tested.

standardized.

Pointers and Arrays

Rule Description Comments
17.1 Pointer arithmetic shall only | Not statically checkable
(Required) | be applied to pointers that unless the pointer verification
address an array or array has been done
element.
17.2 Pointer subtraction shall only | Not statically checkable
(Required) | be applied to pointers that unless the pointer verification
address elements of the same | has been done
array.
17.3 >, >= <, <= shall not be Not statically checkable
(Required) | applied to pointer types unless the pointer verification

except where they point to the
same array.

has been done

Rules Not Checked

Structures and Unions

Rule Description Comments

18.2 An object shall not be assigned | Not statically checkable

(Required) | to an overlapping object. unless the data dynamic
properties is taken into
account

18.3 An area of memory shall "purpose" is functional design

(Required) | not be reused for unrelated issue.

purposes.

Standard Libraries
Rule Description Comments
20.3 The validity of values passed | Not statically checkable
(Required) | to library functions shall be unless all library function are

checked.

standardized

11-55

11 MISRA® Checker

11-56

Code Verification for Eclipse
IDE

® “Overview” on page 12-2

e “Using PolySpace Software Within Eclipse IDE” on page 12-3

12 code Verification for Eclipse IDE

12-2

Overview

The PolySpace Client is integrated with the Eclipse Integrated Development
Environment (IDE) through the PolySpace C/C++ plug-in for Eclipse IDE
(for compatibility information, see “PolySpace Plug-In Requirements” in the
PolySpace Installation Guide).

This plug-in provides PolySpace source code verification and bug detection
functionality for source code developed within Eclipse IDE. Features include
the following:

® A contextual menu that allows you to launch a verification of one or more
files.

* Views in the Eclipse editor that allow you to set verification parameters
and monitor verification progress.

Using PolySpace® Software Within Eclipse IDE

Using PolySpace Software Within Eclipse IDE

In this section...

“PolySpace Features in the Eclipse Editor” on page 12-3

“Verifying Files from Eclipse IDE” on page 12-5

PolySpace Features in the Eclipse Editor

Once the PolySpace C/C++ plug-in for Eclipse IDE is installed, the following
are available in the Eclipse editor:

¢ A PolySpace menu

¢ Buttons on the toolbar to launch a verification and open thePolySpace
spooler

e PolySpace Log and Setting views

12-3

12 code Verification for Eclipse IDE

& C/C++ - Demo_C/example.c - Eclipse Platform - |EI|5|
File Edit Refactor Mavigate Search Project Run | PolySpace Window Help
= S E =2 - =
Jrej, Ul) J_z. Jﬁ g% - I Start PolySpace Verification Ctrl+6 #&'0'%' JBB A~ J = ﬁ%cﬂ:++
J D)= bl vt o - = €23 Stop Local Verification
o [configure Praject
[c/fc++ Projects 2 = B1[E1e F5 open spooer =g Make Targets £2 =g
=S © # [Open Verification Resuits alm t &
< <
B tg 3?"11“7; . Show PolySpace Log view = Demo_C
& é Dn hu - Show PolySpace Settings view =
3 ebug
[]-@ example.c -
B[R include.h o i -
g initialisations.c /¥ Internal function o
5 @ main.c /* Needed for MISRA-rule 8.1 */
5B mathh static int get_oil pressure (void);
5 @ s\ng\e‘ Fle_analysis.c static void Close To_Zero (void):
R s\ng\a_ﬁle_analysls‘h static int Non_Infinite Loop (void): =
B @ s\ng\aiﬁlel:unvatel"v static void Pointer Arithmetic (void): L
B . ' static void Recursion (int* depth);
) tasisll: static void Recursion caller (void);
EDemo .Ccfg static veoid Square Root_conv (double alpha, float *beta_prt);
m‘sra;ul'es e static void Square Root (void);: m
= - ExpecEd n— static void Unreachable Code (void): -
5 e —— extern int get bus status (void);
- : =
. =
static int get_oil pressure (void)
volatile int vol i; =
int i: w
i=vol_i; -
~ o .
E‘.u Problems (z, Tasks (E Console (El Properties (—2 PalySpace Log &8 =2 PolySpace Sethngs] =0
‘ Compile : 0% ‘ Intermediate : 0% Leweld : 0% | Levell : 0% Levelz : 0% ‘ Leveld : 0% Leweld : 0% |
4 _l_l
g Compile search: 44 93
B st
[& Fulllog
i
J i Read-Only Smart Insert b= J

Eclipse Editor with PolySpace®

PolySpace Menu

From this drop-down menu, you can select:

¢ PolySpace > Start PolySpace Verification to launch the verification
of the files selected within the current project.

¢ PolySpace > Stop Local Verification to halt a verification that is in
progress.

¢ PolySpace > Configure Project to set up or modify a PolySpace project
configuration.

* PolySpace > Open Spooler to start the PolySpace spooler. This tool is
used to manage PolySpace jobs that are performed on remote servers.

12-4

Using PolySpace® Software Within Eclipse IDE

* PolySpace > Open Verification Results to open the PolySpace Viewer
with the last available results. If the verification has been done on the
server, you should download the results first.

* PolySpace > Show PolySpace Log view to observe the progress of a
verification.

* PolySpace > Settings view to view or modify verification parameters.

Verifying Files from Eclipse IDE

To start a verification using the Eclipse editor:

1 Select a project within the C/C++ Projects view. If your source files do not
belong to an Eclipse project, then you can create one using the Eclipse
editor:

a Select File > New > C Project.
b Ensure that the Use default location check box is not selected.

¢ Using Browse, navigate to the folder containing your source files, for
example, C:\Test\Source_c.

d In the Project name field, enter a name, for example, Demo_Cpp.

e Click Finish. An Eclipse project is created.

2 In the PolySpace Settings view, click Advanced and specify the
following Target/Compilation options:

e -1
® -0S-target
e -D

® -dialect

For information about these Target/Compilation options, see “Option
Descriptions”in the PolySpace Products for C Reference.

3 Within the C/C++ Projects view, select the file(s) that you want to verify.

4 Either right-click and select Start PolySpace Verification, or select
PolySpace > Start PolySpace Verification.

12-5

12 code Verification for Eclipse IDE

You can follow the progress of a verification in the PolySpace Log view. If an

error or warning is produced, you can double-click it to go to the corresponding
location in the source code.

Use the Viewer (PolySpace > Open Verification Results) to examine the
results of the verification.

12-6

Glossary

Atomic
In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of PolySpace from the command line, rather than via the
launcher Graphical User Interface.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision.

Certain error
See "red check.”

Check
A test performed by PolySpace during a verification and subsequently
colored red, orange, green or gray in the viewer.

Code verification
The PolySpace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Dead Code

Code which is inaccessible at execution time under all circumstances
due to the logic of the software executed prior to it.

Development Process
The process used within a company to progress through the software

development lifecycle.

Green check
Code has been proven to be free of runtime errors.

Glossary-1

Glossary

Glossary-2

Gray check

Unreachable code; dead code.

Imprecision
Approximations are made during a PolySpace verification, so data
values possible at execution time are represented by supersets including
those values.

mcpu
Micro Controller/Processor Unit

Orange check
A warning that represents a possible error which may be revealed upon
further investigation.

PolySpace Approach
The manner of use of PolySpace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
An verification which includes few inconclusive orange checks is said
to be precise

Progress text
Output from PolySpace during verification to indicate what proportion
of the verification has been completed. Could be considered as a “textual
progress bar”.

Red check

Code has been proven to contain definite runtime errors (every execution
will result in an error).

Review
Inspection of the results produced by a PolySpace verification.

Scaling option
Option applied when an application submitted to PolySpace proves to be
bigger or more complex than is practical.

Glossary

Selectivitiy
The ratio (green checks + gray checks + red checks) / (total amount of
checks)

Unreachable code
Dead code.

Verification

The PolySpace process through which code is tested to reveal definite
and potential runtime errors and a set of results is generated for review.

Glossary-3

Glossary

Glossary-4

A

active project
definition 10-3
setting 10-3
analysis options 3-16
generic targets 3-27
MISRA C compliance 3-19 11-4
ANSI compliance 6-3
assistant mode
criterion 8-18
custom methodology 8-21
methodology 8-18
methodology for C 8-18 to 8-19
overview 8-17
reviewing checks 8-22
selection 8-17
use 8-17 8-22

C

call graph 8-27
call tree view 8-11
calling sequence 8-27
cfg. See configuration file
client 1-6 6-2
installation 1-6
verification on 6-19
Client
overview 1-6
coding review progress view 8-11 8-28
color-coding of verification results 1-3 8-13
compile
log 7-6
compile log
Launcher 6-21
Spooler 6-5
compile phase 6-3
compliance
ANSI 6-3
MISRA C 1-2 3-19 11-4

composite filters 8-34

configuration file
definition 3-2

custom methodology
definition 8-21

D

default directory
changing in preferences 3-6
desktop file
definition 3-2
directories
includes 3-10 3-13 3-15
results 3-10 3-13 3-15
sources 3-10 3-13 3-15
downloading
results 8-8
dsk. See desktop file

E
expert mode
filters 8-33
composite 8-34
individual 8-33
overview 8-25
selection 8-25
use 8-25
F
files
includes 3-10 3-13 3-15
results 3-10 3-13 3-15
source 3-10 3-13 3-15
filters 8-33
alpha 8-34
beta 8-34
custom

modification 8-34 to 8-35

Index-1

use 8-34 to 8-35
gamma 8-34
individual 8-33
user def 8-34

G

generic target processors
adding 3-26
definition 3-27
deleting 3-30

H
hardware requirements 7-2
help
accessing 1-8
|
installation
PolySpace Client for C/C++ 1-6
PolySpace products 1-6
PolySpace Server for C/C++ 1-6
L
Launcher
monitoring verification progress 6-21
opening 3-3
starting verification on client 6-19
starting verification on server 6-3
viewing logs 6-21
window 3-3
overview 3-3
progress bar 6-21
licenses
obtaining 1-6
logs
compile

Launcher 6-21

Index-2

M

Spooler 6-5
full

Launcher 6-21

Spooler 6-5
stats

Launcher 6-21

Spooler 6-5
viewing

Launcher 6-21

Spooler 6-5

methodology for C 8-18 to 8-19
MISRA C compliance 1-2

P

analysis option 3-19 11-4
checking 3-19 11-4

file exclusion 3-23 11-7
log 11-11

rules file 3-20 11-5

PolySpace Client

overview 1-6

PolySpace Client for C/C++

installation 1-6
license 1-6

PolySpace In One Click

active project 10-3

overview 10-2

sending files to PolySpace software 10-5
starting verification 10-5

use 10-2

PolySpace products for C

components 1-6
installation 1-6
licenses 1-6
overview 1-2
related products 1-6

Index

user interface 1-6
PolySpace project model file
creation 3-26
definition 3-26
use 3-25
PolySpace Queue Manager Interface. See Spooler
PolySpace Server
overview 1-6
PolySpace Server for C/C++
installation 1-6
license 1-6
ppm. See PolySpace project model file
preferences
Launcher
default directory 3-6
default server mode 6-3
generic targets 3-26
server detection 7-3
Viewer
assistant configuration 8-19
display columns in RTE view 8-30
procedural entities view 8-11
reviewed column 8-30
product overview 1-2
progress bar
Launcher window 6-21
project
creation 3-2
definition 3-2
directories
includes 3-3
results 3-3
sources 3-3
file types
configuration file 3-2
desktop file 3-2
PolySpace project model file 3-2
saving 3-17
project model file. See PolySpace project model
file

related products 1-6
PolySpace products for linking to Models 1-7
PolySpace products for verifying Ada
code 1-7
PolySpace products for verifying C++
code 1-7
reports
generation 8-37
results
directory 3-10 3-13 3-15
downloading from server 8-8
opening 8-11
report generation 8-37
reviewed column 8-30
rte view. See procedural entities view

S

selected check view 8-11

server 1-6 6-2
detection 7-3
information in preferences 7-3
installation 1-6 7-3
verification on 6-3

Server
overview 1-6

source code view 8-11

Spooler
monitoring verification progress 6-5
removing verification from queue 8-8
use 6-5
viewing log 6-5

T

troubleshooting failed verification 7-2

Index-3

Index

\"

variables view 8-11
verification

Index-4

Ada code 1-7

C code 1-2

C++ code 1-7

client 6-2

compile phase 6-3

failed 7-2

monitoring progress
Launcher 6-21
Spooler 6-5

phases 6-3

results
color-coding 1-3
opening 8-11
report generation 8-37
reviewing 8-8

running 6-2

running on client 6-19

running on server 6-3
starting
from Launcher 6-2 to 6-3 6-19
from PolySpace In One Click 6-2 10-5
stopping 6-22
troubleshooting 7-2
with MISRA C checking 11-10
Viewer
modes
selection 8-15
opening 8-11
window
call tree view 8-11
coding review progress view 8-11
overview 8-11
procedural entities view 8-11
selected check view 8-11
source code view 8-11
variables view 8-11

	toc
	Introduction to PolySpace Products
	Introduction to PolySpace Products
	The Value of PolySpace Verification
	Ensure Software Reliability
	Decrease Development Time
	Improve the Development Process

	How PolySpace Verification Works
	What is Static Verification
	Exhaustiveness

	Product Components
	PolySpace Client for C/C++ Software
	PolySpace Server for C/C++ Software

	Installing PolySpace Products
	Related Products
	PolySpace Products for Verifying C++ Code
	PolySpace Products for Verifying Ada Code
	PolySpace Products for Linking to Models

	PolySpace Documentation
	About this Guide
	Related Documentation
	The MathWorks Online

	Choosing How to Use PolySpace Software
	How to Use This Chapter
	Applying PolySpace Verification to Your Development Process
	Overview of the PolySpace Approach
	When No Coding Rules Are Adopted
	When Coding Rules Have Been Adopted
	In a Certification Context
	As an Acceptance Tool

	Standard Development Process
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach
	A Complementary Approach
	Integration with Configuration Management Tools
	Costs and Benefits

	Rigorous Development Process: Introducing Tools and Coding Rules
	Overview
	The Software Development Process
	The PolySpace Approach
	A Complementary Approach
	Costs and Benefits

	A Quality/Qualification Approach
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach
	Costs and Benefits

	Code Acceptance Criterion
	Overview
	The Software Development Process
	The Objective of Using PolySpace Verification
	The PolySpace Approach

	Choosing the Type of Verification You Want to Perform

	Setting Up a Verification Project
	Creating a Project
	What Is a Project?
	Project Directories
	Opening PolySpace Launcher
	Specifying Default Directory
	Creating New Projects
	Opening Existing Projects
	Specifying Source Files
	Specifying Include Directories
	Specifying Results Directory
	Specifying Analysis Options
	Configuring Text and XML Editors
	Saving the Project

	Setting Up Project to Check Coding Rules
	PolySpace MISRA Checker Overview
	Checking Compliance with MISRA C Coding Rules
	Creating a MISRA C Rules File
	Opening a New Rules File

	Excluding Files from the MISRA C Checking

	Setting Up Project for Generic Target Processors
	Project Model Files
	What Is a PolySpace Project Model File?
	Workflow for Using Project Model Files

	Creating Project Model Files
	Viewing Existing Generic Targets
	Defining Generic Targets
	Deleting a Generic Target
	Common Generic Targets
	Creating a Configuration File from a PolySpace Project Model Fil

	Setting up Project to Automatically Test Orange Code
	PolySpace Automatic Orange Tester
	Enabling the Automatic Orange Tester

	Emulating Your Runtime Environment
	Setting Up a Target
	Target/Compiler Overview
	Specifying Target/Compilation Parameters
	Predefined Target Processor Specifications (size of char, int, f
	Generic Target Processors
	Compiling Operating System Dependent Code (OS-target issues)
	List of Predefined Compilation Flags
	My Target Application Runs on Linux
	My Target Application Runs on Solaris
	My Target Application Runs on Vxworks
	My Target Application Does Not Run on Linux, vxworks nor Solaris

	Address Alignment
	Ignoring or Replacing Keywords Before Compilation
	Content of the myTpl.pl file
	Perl Regular Expression Summary

	Verifying Code That Uses KEIL or IAR Dialects
	How to Gather Compilation Options Efficiently
	Example

	Verifying an Application Without a “Main”
	Main Generator Overview
	PolySpace Client for C/C++ Software Default Behavior
	PolySpace Server for C/C++ Software Default Behavior

	Automatically Generating a Main
	Manually Generating a Main

	Applying Data Ranges to External Variables and Stub Functions (D
	Overview of Data Range Specifications (DRS)
	Specifying Data Ranges
	File Format
	Tips
	Example

	Variable Scope
	Performing Efficient Module Testing with DRS
	Reducing Oranges with DRS
	Why Is DRS Most Effective on Module Testing?
	Example

	Preparing Source Code for Verification
	Stubbing
	Stubbing Overview
	Manual vs. Automatic Stubbing
	Deciding which Stub Functions to Provide
	Example
	Summary

	The Stubbing Options PURE and WORST
	The Default and Alternative Behavior for Stubbing
	Function Pointer Cases
	Stubbing Functions with a Variable Argument Number
	Finding Bugs in _polyspace_stdstubs.c
	Example

	Preparing Code for Variables
	Assigning Ranges to Variables/Assert?
	Abstract
	Explanation
	Solution

	Checking Properties on Global Variables at Any Point: Global ass
	Launching Command
	Variables Scope
	Limitations and Fatal Errors

	Modeling Variable Values External to my Application
	How are Variables Initialized?
	Extern
	Volatile
	Absolute Addressing

	Verifying Code with Undefined or Undeclared Variables and Functi
	Definition
	Declaration

	Preparing Code for Built-in Functions
	Preparing Multitasking Code
	PolySpace Software Assumptions
	Modelling Synchronous Tasks
	Solution 1
	Solution 2
	Modelling Interruptions and Asynchronous Events/Tasks/Threads
	Solution 1: Where interrupts (ISRs) CANNOT preempt each other
	Solution 2: Where interrupts CAN pre-empt each other
	Are Interruptions Maskable or Preemptive by Default?
	Shared Variables
	Differences Between Dictionary and Concurrent Access Graph
	Critical Sections
	Original Code
	File Replacing the Original Include File
	Command line to launch PolySpace
	Mutual Exclusion
	Semaphores

	Mailboxes
	Atomicity (Can an Instruction be Interrupted by Another)
	Priorities

	Verifying “Unsupported” Code
	Ignoring Assembly Code
	Example: Ignore All Statements, the Rest of the Function Remains
	Example: Automatic Stubbing
	Examples: Empty Body
	Example: #asm and #endasm Support
	Example: What to Do If -discard-asm Fails to Parse an asm Code S

	Dealing with Backward “ goto ” Statements
	Types Promotion
	Unsigned Integers Promoted to Signed Integers
	What are the Promotions Rules in Operators?
	Example

	Running a Verification
	Types of Verification
	Running Verifications on PolySpace Server
	Starting Server Verification
	What Happens When You Run Verification
	Managing Verification Jobs Using the PolySpace Queue Manager
	Monitoring Progress of Server Verification
	Viewing Verification Log File on Server
	Stopping Server Verification Before It Completes
	Removing Verification Jobs from Server Before They Run
	Changing Order of Verification Jobs in Server Queue
	Purging Server Queue
	Changing Queue Manager Password
	Sharing Server Verifications Between Users
	Security of Jobs in Server Queue
	analysis-keys.txt File
	Example:
	Sharing Verifications Between Accounts
	Magic Key to Share Verifications
	If analysis-keys.txt File is Lost or Corrupted

	Running Verifications on PolySpace Client
	Starting Verification on Client
	What Happens When You Run Verification
	Monitoring the Progress of the Verification
	Stopping Client Verification Before It Completes

	Running Verifications from Command Line
	Launching Verifications in Batch
	Managing Verifications in Batch

	Troubleshooting Verification Problems
	Verification Process Failed Errors
	Overview
	Hardware Does Not Meet Requirements
	You Did Not Specify the Location of Included Files
	PolySpace Software Cannot Find the Server
	Limit on Assignments and Function Calls

	Compile Errors
	Overview
	Examining the Compile Log
	Syntax error
	Undeclared identifier
	No such file or directory
	Compilation errors with keywords: @interrupt, @address(0xABCDEF)

	Link Messages
	Overview
	Function: Wrong Argument Type
	Function: Wrong Argument Number
	Variable: Wrong Type
	Variable: Signed/Unsigned
	Variable: Different Qualifier
	Variable: Array Against Variable
	Variable: Wrong Array Size
	Missing Required Prototype for varargs

	Stubbing Errors
	Errors when Compiling _polyspace_stdstubs.c
	Standard Error Messages
	Stubbing standard library functions ...
	Stubbing standard library functions ...
	Stubbing standard library functions ...
	Troubleshooting

	Errors when Creating Automatic Stubs
	Error 1
	Error 2
	Error 3

	Intermediate Language Errors
	Reducing Verification Time
	How Far has the Verification Progressed? How Can I Predict the D
	Example
	An Ideal Application Size
	Why Should there be an Optimum Size?
	Switch the Antivirus Off
	Tuning PolySpace Parameters
	Selecting a Subset of Code
	Example 1
	Example 2
	Example 3
	Consequences of Subdividing Code
	Typical Examples of Removable Components, According to the Logic
	Subdivision According to Data-Flow
	Subdivide According to Real-Time Characteristics
	Subdivide According to Files

	A Decision Algorithm to Speed-Up a Verification: Hints and Troub
	What are the Benefits of these Methods?
	When the Application is Incomplete
	Considering the Effects of Application Code Size

	Reviewing Verification Results
	Before You Review PolySpace Results
	Overview: Understanding PolySpace Results
	Why Gray Follows Red and Green Follows Orange
	Summary

	What is the Message and What does it Mean?
	Explanation
	Summary

	What is the C Explanation?
	Summary

	Opening Verification Results
	Downloading Results from Server to Client
	Opening Verification Results
	Exploring the Viewer Window
	Overview
	Procedural Entities View

	Selecting Viewer Mode
	Setting Character Encoding Preferences

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Exploring Methodology for C
	Defining a Custom Methodology
	Reviewing Checks

	Reviewing Results in Expert Mode
	What Is Expert Mode?
	Switching to Expert Mode
	Selecting a Check to Review
	Displaying the Calling Sequence
	Tracking Review Progress
	Making the Reviewed Column Visible
	Filtering Checks
	Types of Filters
	Individual Filters
	Composite Filters
	Custom Filters

	Creating a Custom Filter

	Generating Reports of Verification Results
	Using PolySpace Results
	Review Runtime Errors: Fix Red Errors
	Review Dead Code Checks: Why Gray Code is Interesting
	Functional Bugs Can Be Found in Gray Code
	Structural Coverage

	Selective Orange Review: Finding the Maximum Number of Bugs in O
	Choosing What to Review
	Reviewing Oranges Quickly
	Performing a Selective Orange Review

	Exhaustive Orange Review at Unit Phase
	Exhaustive Orange Review at Integration Phase
	Cost
	Method

	Integration Bug Tracking
	How to Find Bugs in Unprotected Shared Data
	Dataflow Verification
	Data and Coding Rules
	Potential Side Effect of a Red Error
	PolySpace Remembers the Relationships Between Variables
	Abstract
	Explanation 1
	Explanation 2
	Summary

	Why There Might be 2 Distinct Colors in a while/for Statement.

	Managing Orange Checks
	Understanding Orange Checks
	What is an Orange Check?
	Sources of Orange Checks
	Determining Cause of Orange Checks

	Reducing Orange Checks in Your Results
	Options to Reduce Orange Checks
	Generic Objectives: A Balance Between Precision and Verification
	Applying Coding Rules to Reduce Orange Checks
	Set of Coding Rules with a Direct Impact on Selectivity
	Set of Coding Rules with an Indirect Impact on Selectivity

	Varying the Precision Level
	Applying Software Safety Level Wisely
	Abstract
	Explanation

	Adding Precision Constraints at the Periphery Via Stubs
	Reduce the cloud of points
	Increase the Number of Red and Green Checks

	Describing Multitasking Behavior Properly
	Tuning Advanced Parameters
	Applying Data Ranges

	Reviewing Orange Checks
	Selective Orange Review
	Choosing What to Review
	Review Oranges Quickly

	Performing a Selective Orange Review
	Exhaustive Orange Review
	Performing an Exhaustive Orange Review
	Inconclusive
	Basic Imprecision
	Real Bugs and Data Sets

	Automatically Testing Orange Code
	Automatic Orange Tester Overview
	How the Automatic Orange Tester Works
	Limitations of Dynamic Testing

	Before Using the Automatic Orange Tester
	Launching the Automatic Orange Tester
	Reviewing the Test Results
	Test Campaign Results
	Results Table
	Log

	Refining Data Ranges
	Saving and Reusing Your Configuration
	Exporting Data Ranges for PolySpace Verification
	Configuring Compiler Options
	Technical Limitations
	Unsupported PolySpace Options
	Options with Limitations
	Unsupported C Language Constructions

	Day to Day Use
	PolySpace In One Click Overview
	Using PolySpace In One Click
	PolySpace In One Click Workflow
	Setting the Active Project
	Launching Verification
	Using the Taskbar Icon

	MISRA Checker
	PolySpace MISRA Checker Overview
	Setting Up MISRA C Checking
	Checking Compliance with MISRA C Coding Rules
	Creating a MISRA C Rules File
	Opening a New Rules File

	Excluding Files from the MISRA C Checking
	Configuring Text and XML Editors

	Running a Verification with MISRA C Checking
	Starting the Verification
	Examining the MISRA C Log
	Opening MISRA-C Report

	Rules Supported
	Language Extensions
	Character Sets
	Identifiers
	Types
	Constants
	Declarations and Definitions
	Initialization
	Arithmetic Type Conversion
	Pointer Type Conversion
	Expressions
	Control Statement Expressions
	Control Flow
	Switch Statements
	Functions
	Pointers and Arrays
	Structures and Unions
	Preprocessing Directives
	Standard Libraries
	runtime Failures

	Rules Partially Supported
	Environment
	Language Extension
	Identifier
	Declarations and Definitions
	Expressions
	Control Statement Expressions
	Control Flow
	Functions
	Pointers and Arrays
	Preprocessing Directives

	Rules Not Checked
	Environment
	Language Extensions
	Documentation
	Types
	Functions
	Pointers and Arrays
	Structures and Unions
	Standard Libraries

	Code Verification for Eclipse IDE
	Overview
	Using PolySpace Software Within Eclipse IDE
	PolySpace Features in the Eclipse Editor
	PolySpace Menu

	Verifying Files from Eclipse IDE

	Glossary
	Index

	tables
	ST7 (Hiware C compiler : HiCross for ST7)
	ST9 (GNU C compiler : gcc9 for ST9)
	Hitachi H8/300, H8/300L
	Hitachi H8/300H, H8S, H8C, H8/Tiny
	Example: -dialect keil -sfr-types sfr=8
	Example: -dialect iar -sfr-types sfr=8

